Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpss1d Structured version   Visualization version   GIF version

Theorem relexpss1d 37016
Description: The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.)
Hypotheses
Ref Expression
relexpss1d.a (𝜑𝐴𝐵)
relexpss1d.b (𝜑𝐵 ∈ V)
relexpss1d.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
relexpss1d (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))

Proof of Theorem relexpss1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexpss1d.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 elnn0 11171 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
31, 2sylib 207 . 2 (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 oveq2 6557 . . . . . 6 (𝑥 = 1 → (𝐴𝑟𝑥) = (𝐴𝑟1))
5 oveq2 6557 . . . . . 6 (𝑥 = 1 → (𝐵𝑟𝑥) = (𝐵𝑟1))
64, 5sseq12d 3597 . . . . 5 (𝑥 = 1 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟1) ⊆ (𝐵𝑟1)))
76imbi2d 329 . . . 4 (𝑥 = 1 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))))
8 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑟𝑥) = (𝐴𝑟𝑦))
9 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑟𝑥) = (𝐵𝑟𝑦))
108, 9sseq12d 3597 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)))
1110imbi2d 329 . . . 4 (𝑥 = 𝑦 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))))
12 oveq2 6557 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐴𝑟𝑥) = (𝐴𝑟(𝑦 + 1)))
13 oveq2 6557 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐵𝑟𝑥) = (𝐵𝑟(𝑦 + 1)))
1412, 13sseq12d 3597 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1))))
1514imbi2d 329 . . . 4 (𝑥 = (𝑦 + 1) → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
16 oveq2 6557 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑟𝑥) = (𝐴𝑟𝑁))
17 oveq2 6557 . . . . . 6 (𝑥 = 𝑁 → (𝐵𝑟𝑥) = (𝐵𝑟𝑁))
1816, 17sseq12d 3597 . . . . 5 (𝑥 = 𝑁 → ((𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥) ↔ (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
1918imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝐴𝑟𝑥) ⊆ (𝐵𝑟𝑥)) ↔ (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))))
20 relexpss1d.a . . . . 5 (𝜑𝐴𝐵)
21 relexpss1d.b . . . . . . 7 (𝜑𝐵 ∈ V)
2221, 20ssexd 4733 . . . . . 6 (𝜑𝐴 ∈ V)
2322relexp1d 13619 . . . . 5 (𝜑 → (𝐴𝑟1) = 𝐴)
2421relexp1d 13619 . . . . 5 (𝜑 → (𝐵𝑟1) = 𝐵)
2520, 23, 243sstr4d 3611 . . . 4 (𝜑 → (𝐴𝑟1) ⊆ (𝐵𝑟1))
26 simp3 1056 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦))
27203ad2ant2 1076 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴𝐵)
2826, 27coss12d 13559 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → ((𝐴𝑟𝑦) ∘ 𝐴) ⊆ ((𝐵𝑟𝑦) ∘ 𝐵))
29223ad2ant2 1076 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐴 ∈ V)
30 simp1 1054 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝑦 ∈ ℕ)
31 relexpsucnnr 13613 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
3229, 30, 31syl2anc 691 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) = ((𝐴𝑟𝑦) ∘ 𝐴))
33213ad2ant2 1076 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → 𝐵 ∈ V)
34 relexpsucnnr 13613 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑦 ∈ ℕ) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3533, 30, 34syl2anc 691 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐵𝑟(𝑦 + 1)) = ((𝐵𝑟𝑦) ∘ 𝐵))
3628, 32, 353sstr4d 3611 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝜑 ∧ (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))
37363exp 1256 . . . . 5 (𝑦 ∈ ℕ → (𝜑 → ((𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦) → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
3837a2d 29 . . . 4 (𝑦 ∈ ℕ → ((𝜑 → (𝐴𝑟𝑦) ⊆ (𝐵𝑟𝑦)) → (𝜑 → (𝐴𝑟(𝑦 + 1)) ⊆ (𝐵𝑟(𝑦 + 1)))))
397, 11, 15, 19, 25, 38nnind 10915 . . 3 (𝑁 ∈ ℕ → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
40 simpr 476 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → 𝜑)
41 dmss 5245 . . . . . . . 8 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
42 rnss 5275 . . . . . . . 8 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
4341, 42jca 553 . . . . . . 7 (𝐴𝐵 → (dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵))
44 unss12 3747 . . . . . . 7 ((dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵) → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
4520, 43, 443syl 18 . . . . . 6 (𝜑 → (dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵))
46 ssres2 5345 . . . . . 6 ((dom 𝐴 ∪ ran 𝐴) ⊆ (dom 𝐵 ∪ ran 𝐵) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
4740, 45, 463syl 18 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
48 simpl 472 . . . . . . 7 ((𝑁 = 0 ∧ 𝜑) → 𝑁 = 0)
4948oveq2d 6565 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = (𝐴𝑟0))
50 relexp0g 13610 . . . . . . 7 (𝐴 ∈ V → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5140, 22, 503syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5249, 51eqtrd 2644 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
5348oveq2d 6565 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = (𝐵𝑟0))
54 relexp0g 13610 . . . . . . 7 (𝐵 ∈ V → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5540, 21, 543syl 18 . . . . . 6 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5653, 55eqtrd 2644 . . . . 5 ((𝑁 = 0 ∧ 𝜑) → (𝐵𝑟𝑁) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
5747, 52, 563sstr4d 3611 . . . 4 ((𝑁 = 0 ∧ 𝜑) → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
5857ex 449 . . 3 (𝑁 = 0 → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
5939, 58jaoi 393 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁)))
603, 59mpcom 37 1 (𝜑 → (𝐴𝑟𝑁) ⊆ (𝐵𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  wss 3540   I cid 4948  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cn 10897  0cn0 11169  𝑟crelexp 13608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-relexp 13609
This theorem is referenced by:  corcltrcl  37050  cotrclrcl  37053
  Copyright terms: Public domain W3C validator