Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-relexp Structured version   Visualization version   GIF version

Definition df-relexp 13609
 Description: Definition of repeated composition of a relation with itself, aka relation exponentiation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 22-May-2020.)
Assertion
Ref Expression
df-relexp 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
Distinct variable group:   𝑛,𝑟,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-relexp
StepHypRef Expression
1 crelexp 13608 . 2 class 𝑟
2 vr . . 3 setvar 𝑟
3 vn . . 3 setvar 𝑛
4 cvv 3173 . . 3 class V
5 cn0 11169 . . 3 class 0
63cv 1474 . . . . 5 class 𝑛
7 cc0 9815 . . . . 5 class 0
86, 7wceq 1475 . . . 4 wff 𝑛 = 0
9 cid 4948 . . . . 5 class I
102cv 1474 . . . . . . 7 class 𝑟
1110cdm 5038 . . . . . 6 class dom 𝑟
1210crn 5039 . . . . . 6 class ran 𝑟
1311, 12cun 3538 . . . . 5 class (dom 𝑟 ∪ ran 𝑟)
149, 13cres 5040 . . . 4 class ( I ↾ (dom 𝑟 ∪ ran 𝑟))
15 vx . . . . . . 7 setvar 𝑥
16 vy . . . . . . 7 setvar 𝑦
1715cv 1474 . . . . . . . 8 class 𝑥
1817, 10ccom 5042 . . . . . . 7 class (𝑥𝑟)
1915, 16, 4, 4, 18cmpt2 6551 . . . . . 6 class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟))
20 vz . . . . . . 7 setvar 𝑧
2120, 4, 10cmpt 4643 . . . . . 6 class (𝑧 ∈ V ↦ 𝑟)
22 c1 9816 . . . . . 6 class 1
2319, 21, 22cseq 12663 . . . . 5 class seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))
246, 23cfv 5804 . . . 4 class (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)
258, 14, 24cif 4036 . . 3 class if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))
262, 3, 4, 5, 25cmpt2 6551 . 2 class (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
271, 26wceq 1475 1 wff 𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
 Colors of variables: wff setvar class This definition is referenced by:  relexp0g  13610  relexpsucnnr  13613  relexp1g  13614
 Copyright terms: Public domain W3C validator