MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssco Structured version   Visualization version   GIF version

Theorem ustssco 21828
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.)
Assertion
Ref Expression
ustssco ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))

Proof of Theorem ustssco
StepHypRef Expression
1 ssun1 3738 . . . 4 𝑉 ⊆ (𝑉 ∪ (𝑉𝑉))
2 coires1 5570 . . . . . 6 (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉𝑋)
3 ustrel 21825 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
4 ustssxp 21818 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
5 dmss 5245 . . . . . . . . 9 (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
7 dmxpid 5266 . . . . . . . 8 dom (𝑋 × 𝑋) = 𝑋
86, 7syl6sseq 3614 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉𝑋)
9 relssres 5357 . . . . . . 7 ((Rel 𝑉 ∧ dom 𝑉𝑋) → (𝑉𝑋) = 𝑉)
103, 8, 9syl2anc 691 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉𝑋) = 𝑉)
112, 10syl5eq 2656 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉)
1211uneq1d 3728 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)) = (𝑉 ∪ (𝑉𝑉)))
131, 12syl5sseqr 3617 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)))
14 coundi 5553 . . 3 (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉))
1513, 14syl6sseqr 3615 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)))
16 ustdiag 21822 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
17 ssequn1 3745 . . . 4 (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1816, 17sylib 207 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1918coeq2d 5206 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉𝑉))
2015, 19sseqtrd 3604 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540   I cid 4948   × cxp 5036  dom cdm 5038  cres 5040  ccom 5042  Rel wrel 5043  cfv 5804  UnifOncust 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ust 21814
This theorem is referenced by:  ustexsym  21829  ustex3sym  21831
  Copyright terms: Public domain W3C validator