MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundir Structured version   Visualization version   GIF version

Theorem coundir 5554
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundir ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem coundir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 4660 . . 3 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))}
2 brun 4633 . . . . . . . 8 (𝑦(𝐴𝐵)𝑧 ↔ (𝑦𝐴𝑧𝑦𝐵𝑧))
32anbi2i 726 . . . . . . 7 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ (𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)))
4 andi 907 . . . . . . 7 ((𝑥𝐶𝑦 ∧ (𝑦𝐴𝑧𝑦𝐵𝑧)) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
53, 4bitri 263 . . . . . 6 ((𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
65exbii 1764 . . . . 5 (∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧) ↔ ∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)))
7 19.43 1799 . . . . 5 (∃𝑦((𝑥𝐶𝑦𝑦𝐴𝑧) ∨ (𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
86, 7bitr2i 264 . . . 4 ((∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)) ↔ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧))
98opabbii 4649 . . 3 {⟨𝑥, 𝑧⟩ ∣ (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) ∨ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧))} = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
101, 9eqtri 2632 . 2 ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
11 df-co 5047 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
12 df-co 5047 . . 3 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
1311, 12uneq12i 3727 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ({⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ∪ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
14 df-co 5047 . 2 ((𝐴𝐵) ∘ 𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦(𝐴𝐵)𝑧)}
1510, 13, 143eqtr4ri 2643 1 ((𝐴𝐵) ∘ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1475  wex 1695  cun 3538   class class class wbr 4583  {copab 4642  ccom 5042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-br 4584  df-opab 4644  df-co 5047
This theorem is referenced by:  diophrw  36340  diophren  36395  rtrclex  36943  trclubgNEW  36944  trclexi  36946  rtrclexi  36947  cnvtrcl0  36952  trrelsuperrel2dg  36982
  Copyright terms: Public domain W3C validator