Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4i Structured version   Visualization version   GIF version

Theorem eldioph4i 36394
Description: Forward-only version of eldioph4b 36393. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4i ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑊,𝑤   𝑡,𝑁,𝑤   𝑡,𝑃,𝑤

Proof of Theorem eldioph4i
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3722 . . . . . . . . 9 (𝑡 = 𝑎 → (𝑡𝑤) = (𝑎𝑤))
21fveq2d 6107 . . . . . . . 8 (𝑡 = 𝑎 → (𝑃‘(𝑡𝑤)) = (𝑃‘(𝑎𝑤)))
32eqeq1d 2612 . . . . . . 7 (𝑡 = 𝑎 → ((𝑃‘(𝑡𝑤)) = 0 ↔ (𝑃‘(𝑎𝑤)) = 0))
43rexbidv 3034 . . . . . 6 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0))
5 uneq2 3723 . . . . . . . . 9 (𝑤 = 𝑏 → (𝑎𝑤) = (𝑎𝑏))
65fveq2d 6107 . . . . . . . 8 (𝑤 = 𝑏 → (𝑃‘(𝑎𝑤)) = (𝑃‘(𝑎𝑏)))
76eqeq1d 2612 . . . . . . 7 (𝑤 = 𝑏 → ((𝑃‘(𝑎𝑤)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
87cbvrexv 3148 . . . . . 6 (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0)
94, 8syl6bb 275 . . . . 5 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
109cbvrabv 3172 . . . 4 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}
11 fveq1 6102 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
1211eqeq1d 2612 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
1312rexbidv 3034 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
1413rabbidv 3164 . . . . . 6 (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0})
1514eqeq2d 2620 . . . . 5 (𝑝 = 𝑃 → ({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0} ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}))
1615rspcev 3282 . . . 4 ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1710, 16mpan2 703 . . 3 (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1817anim2i 591 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
19 eldioph4b.a . . 3 𝑊 ∈ V
20 eldioph4b.b . . 3 ¬ 𝑊 ∈ Fin
21 eldioph4b.c . . 3 (𝑊 ∩ ℕ) = ∅
2219, 20, 21eldioph4b 36393 . 2 ({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
2318, 22sylibr 223 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  cin 3539  c0 3874  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  ...cfz 12197  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mzpcl 36304  df-mzp 36305  df-dioph 36337
This theorem is referenced by:  diophren  36395
  Copyright terms: Public domain W3C validator