MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Visualization version   GIF version

Theorem cxpsqrtlem 24248
Description: Lemma for cxpsqrt 24249. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 9874 . . 3 i ∈ ℂ
2 sqrtcl 13949 . . . 4 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
32ad2antrr 758 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
4 mulcl 9899 . . 3 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
51, 3, 4sylancr 694 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℂ)
6 imval 13695 . . . 4 ((i · (√‘𝐴)) ∈ ℂ → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
75, 6syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
8 ine0 10344 . . . . . 6 i ≠ 0
9 divcan3 10590 . . . . . 6 (((√‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
101, 8, 9mp3an23 1408 . . . . 5 ((√‘𝐴) ∈ ℂ → ((i · (√‘𝐴)) / i) = (√‘𝐴))
113, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
1211fveq2d 6107 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘((i · (√‘𝐴)) / i)) = (ℜ‘(√‘𝐴)))
13 halfre 11123 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
1413recni 9931 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
15 logcl 24119 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
16 mulcl 9899 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1714, 15, 16sylancr 694 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1817recld 13782 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
1918reefcld 14657 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2017imcld 13783 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
2120recoscld 14713 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2218rpefcld 14674 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ+)
2322rpge0d 11752 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))))
24 immul2 13725 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ (log‘𝐴) ∈ ℂ) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2513, 15, 24sylancr 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2615imcld 13783 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2726recnd 9947 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
28 mulcom 9901 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
2914, 27, 28sylancr 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
3025, 29eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
31 logimcl 24120 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
3231simpld 474 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
33 pire 24014 . . . . . . . . . . . . . . . 16 π ∈ ℝ
3433renegcli 10221 . . . . . . . . . . . . . . 15 -π ∈ ℝ
35 ltle 10005 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3634, 26, 35sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3732, 36mpd 15 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
3831simprd 478 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
3934, 33elicc2i 12110 . . . . . . . . . . . . 13 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4026, 37, 38, 39syl3anbrc 1239 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ (-π[,]π))
41 halfgt0 11125 . . . . . . . . . . . . . 14 0 < (1 / 2)
4213, 41elrpii 11711 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
4333recni 9931 . . . . . . . . . . . . . . 15 π ∈ ℂ
44 2cn 10968 . . . . . . . . . . . . . . 15 2 ∈ ℂ
45 2ne0 10990 . . . . . . . . . . . . . . 15 2 ≠ 0
46 divneg 10598 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4743, 44, 45, 46mp3an 1416 . . . . . . . . . . . . . 14 -(π / 2) = (-π / 2)
4834recni 9931 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4948, 44, 45divreci 10649 . . . . . . . . . . . . . 14 (-π / 2) = (-π · (1 / 2))
5047, 49eqtr2i 2633 . . . . . . . . . . . . 13 (-π · (1 / 2)) = -(π / 2)
5143, 44, 45divreci 10649 . . . . . . . . . . . . . 14 (π / 2) = (π · (1 / 2))
5251eqcomi 2619 . . . . . . . . . . . . 13 (π · (1 / 2)) = (π / 2)
5334, 33, 42, 50, 52iccdili 12182 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5440, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5530, 54eqeltrd 2688 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)))
56 cosq14ge0 24067 . . . . . . . . . 10 ((ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5755, 56syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5819, 21, 23, 57mulge0d 10483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
59 cxpef 24211 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
6014, 59mp3an3 1405 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
61 efeul 14731 . . . . . . . . . . . 12 (((1 / 2) · (log‘𝐴)) ∈ ℂ → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6217, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6360, 62eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6463fveq2d 6107 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
6521recnd 9947 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
6620resincld 14712 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
6766recnd 9947 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
68 mulcl 9899 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
691, 67, 68sylancr 694 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
7065, 69addcld 9938 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))) ∈ ℂ)
7119, 70remul2d 13815 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
7221, 66crred 13819 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))) = (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
7372oveq2d 6565 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7464, 71, 733eqtrd 2648 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7558, 74breqtrrd 4611 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
7675adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
77 simpr 476 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = -(√‘𝐴))
7877fveq2d 6107 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘-(√‘𝐴)))
793renegd 13797 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘-(√‘𝐴)) = -(ℜ‘(√‘𝐴)))
8078, 79eqtrd 2644 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = -(ℜ‘(√‘𝐴)))
8176, 80breqtrd 4609 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -(ℜ‘(√‘𝐴)))
823recld 13782 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ∈ ℝ)
8382le0neg1d 10478 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) ≤ 0 ↔ 0 ≤ -(ℜ‘(√‘𝐴))))
8481, 83mpbird 246 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ≤ 0)
85 sqrtrege0 13953 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴)))
8685ad2antrr 758 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(√‘𝐴)))
87 0re 9919 . . . . 5 0 ∈ ℝ
88 letri3 10002 . . . . 5 (((ℜ‘(√‘𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
8982, 87, 88sylancl 693 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
9084, 86, 89mpbir2and 959 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) = 0)
917, 12, 903eqtrd 2648 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = 0)
925, 91reim0bd 13788 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  -cneg 10146   / cdiv 10563  2c2 10947  [,]cicc 12049  cre 13685  cim 13686  csqrt 13821  expce 14631  sincsin 14633  cosccos 14634  πcpi 14636  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  cxpsqrt  24249
  Copyright terms: Public domain W3C validator