MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Unicode version

Theorem cxpsqrtlem 23059
Description: Lemma for cxpsqrt 23060. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  RR )

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 9554 . . 3  |-  _i  e.  CC
2 sqrtcl 13175 . . . 4  |-  ( A  e.  CC  ->  ( sqr `  A )  e.  CC )
32ad2antrr 725 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  A )  e.  CC )
4 mulcl 9579 . . 3  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( _i  x.  ( sqr `  A ) )  e.  CC )
51, 3, 4sylancr 663 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  CC )
6 imval 12921 . . . 4  |-  ( ( _i  x.  ( sqr `  A ) )  e.  CC  ->  ( Im `  ( _i  x.  ( sqr `  A ) ) )  =  ( Re
`  ( ( _i  x.  ( sqr `  A
) )  /  _i ) ) )
75, 6syl 16 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Im `  ( _i  x.  ( sqr `  A
) ) )  =  ( Re `  (
( _i  x.  ( sqr `  A ) )  /  _i ) ) )
8 ine0 9999 . . . . . 6  |-  _i  =/=  0
9 divcan3 10238 . . . . . 6  |-  ( ( ( sqr `  A
)  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
101, 8, 9mp3an23 1317 . . . . 5  |-  ( ( sqr `  A )  e.  CC  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
113, 10syl 16 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
1211fveq2d 5860 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( (
_i  x.  ( sqr `  A ) )  /  _i ) )  =  ( Re `  ( sqr `  A ) ) )
13 halfre 10761 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
1413recni 9611 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  CC
15 logcl 22932 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
16 mulcl 9579 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( log `  A )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( log `  A ) )  e.  CC )
1714, 15, 16sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  / 
2 )  x.  ( log `  A ) )  e.  CC )
1817recld 13008 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  RR )
1918reefcld 13804 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
2017imcld 13009 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  RR )
2120recoscld 13860 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
2218rpefcld 13821 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR+ )
2322rpge0d 11270 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) )
24 immul2 12951 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  ( log `  A )  e.  CC )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( 1  /  2 )  x.  ( Im `  ( log `  A ) ) ) )
2513, 15, 24sylancr 663 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( 1  /  2 )  x.  ( Im `  ( log `  A ) ) ) )
2615imcld 13009 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  RR )
2726recnd 9625 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  CC )
28 mulcom 9581 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( Im `  ( log `  A ) )  e.  CC )  ->  (
( 1  /  2
)  x.  ( Im
`  ( log `  A
) ) )  =  ( ( Im `  ( log `  A ) )  x.  ( 1  /  2 ) ) )
2914, 27, 28sylancr 663 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  / 
2 )  x.  (
Im `  ( log `  A ) ) )  =  ( ( Im
`  ( log `  A
) )  x.  (
1  /  2 ) ) )
3025, 29eqtrd 2484 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( Im
`  ( log `  A
) )  x.  (
1  /  2 ) ) )
31 logimcl 22933 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
3231simpld 459 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
33 pire 22827 . . . . . . . . . . . . . . . 16  |-  pi  e.  RR
3433renegcli 9885 . . . . . . . . . . . . . . 15  |-  -u pi  e.  RR
35 ltle 9676 . . . . . . . . . . . . . . 15  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
3634, 26, 35sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
3732, 36mpd 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u pi  <_  ( Im `  ( log `  A
) ) )
3831simprd 463 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  <_  pi )
3934, 33elicc2i 11600 . . . . . . . . . . . . 13  |-  ( ( Im `  ( log `  A ) )  e.  ( -u pi [,] pi )  <->  ( ( Im
`  ( log `  A
) )  e.  RR  /\  -u pi  <_  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
4026, 37, 38, 39syl3anbrc 1181 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  ( -u pi [,] pi ) )
41 halfgt0 10763 . . . . . . . . . . . . . 14  |-  0  <  ( 1  /  2
)
4213, 41elrpii 11233 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR+
4333recni 9611 . . . . . . . . . . . . . . 15  |-  pi  e.  CC
44 2cn 10613 . . . . . . . . . . . . . . 15  |-  2  e.  CC
45 2ne0 10635 . . . . . . . . . . . . . . 15  |-  2  =/=  0
46 divneg 10246 . . . . . . . . . . . . . . 15  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
pi  /  2 )  =  ( -u pi  /  2 ) )
4743, 44, 45, 46mp3an 1325 . . . . . . . . . . . . . 14  |-  -u (
pi  /  2 )  =  ( -u pi  /  2 )
4834recni 9611 . . . . . . . . . . . . . . 15  |-  -u pi  e.  CC
4948, 44, 45divreci 10296 . . . . . . . . . . . . . 14  |-  ( -u pi  /  2 )  =  ( -u pi  x.  ( 1  /  2
) )
5047, 49eqtr2i 2473 . . . . . . . . . . . . 13  |-  ( -u pi  x.  ( 1  / 
2 ) )  = 
-u ( pi  / 
2 )
5143, 44, 45divreci 10296 . . . . . . . . . . . . . 14  |-  ( pi 
/  2 )  =  ( pi  x.  (
1  /  2 ) )
5251eqcomi 2456 . . . . . . . . . . . . 13  |-  ( pi  x.  ( 1  / 
2 ) )  =  ( pi  /  2
)
5334, 33, 42, 50, 52iccdili 11669 . . . . . . . . . . . 12  |-  ( ( Im `  ( log `  A ) )  e.  ( -u pi [,] pi )  ->  ( ( Im `  ( log `  A ) )  x.  ( 1  /  2
) )  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) )
5440, 53syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  A ) )  x.  ( 1  /  2 ) )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
5530, 54eqeltrd 2531 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
56 cosq14ge0 22880 . . . . . . . . . 10  |-  ( ( Im `  ( ( 1  /  2 )  x.  ( log `  A
) ) )  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  ->  0  <_  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) )
5755, 56syl 16 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) )
5819, 21, 23, 57mulge0d 10136 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( ( exp `  ( Re `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) )  x.  ( cos `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) ) )
59 cxpef 23022 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
1  /  2 )  e.  CC )  -> 
( A  ^c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
6014, 59mp3an3 1314 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
61 efeul 13878 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  ( log `  A ) )  e.  CC  ->  ( exp `  ( ( 1  / 
2 )  x.  ( log `  A ) ) )  =  ( ( exp `  ( Re
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6217, 61syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( ( cos `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6360, 62eqtrd 2484 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^c 
( 1  /  2
) )  =  ( ( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6463fveq2d 5860 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( A  ^c  ( 1  /  2 ) ) )  =  ( Re
`  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( ( cos `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) ) )
6521recnd 9625 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )
6620resincld 13859 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
6766recnd 9625 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )
68 mulcl 9579 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )  -> 
( _i  x.  ( sin `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) )  e.  CC )
691, 67, 68sylancr 663 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( _i  x.  ( sin `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) )  e.  CC )
7065, 69addcld 9618 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) )  e.  CC )
7119, 70remul2d 13041 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( Re
`  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) ) )
7221, 66crred 13045 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) )  =  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) )
7372oveq2d 6297 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( Re `  ( ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) ) )
7464, 71, 733eqtrd 2488 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( A  ^c  ( 1  /  2 ) ) )  =  ( ( exp `  ( Re
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) )
7558, 74breqtrrd 4463 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( Re `  ( A  ^c 
( 1  /  2
) ) ) )
7675adantr 465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_  ( Re `  ( A  ^c  ( 1  /  2 ) ) ) )
77 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( A  ^c  ( 1  /  2 ) )  =  -u ( sqr `  A
) )
7877fveq2d 5860 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( A  ^c  ( 1  /  2 ) ) )  =  ( Re
`  -u ( sqr `  A
) ) )
793renegd 13023 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  -u ( sqr `  A ) )  = 
-u ( Re `  ( sqr `  A ) ) )
8078, 79eqtrd 2484 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( A  ^c  ( 1  /  2 ) ) )  =  -u (
Re `  ( sqr `  A ) ) )
8176, 80breqtrd 4461 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_ 
-u ( Re `  ( sqr `  A ) ) )
823recld 13008 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  e.  RR )
8382le0neg1d 10131 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( Re `  ( sqr `  A ) )  <_  0  <->  0  <_  -u ( Re `  ( sqr `  A ) ) ) )
8481, 83mpbird 232 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  <_ 
0 )
85 sqrtrege0 13179 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( Re `  ( sqr `  A ) ) )
8685ad2antrr 725 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_  ( Re `  ( sqr `  A ) ) )
87 0re 9599 . . . . 5  |-  0  e.  RR
88 letri3 9673 . . . . 5  |-  ( ( ( Re `  ( sqr `  A ) )  e.  RR  /\  0  e.  RR )  ->  (
( Re `  ( sqr `  A ) )  =  0  <->  ( (
Re `  ( sqr `  A ) )  <_ 
0  /\  0  <_  ( Re `  ( sqr `  A ) ) ) ) )
8982, 87, 88sylancl 662 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( Re `  ( sqr `  A ) )  =  0  <->  ( (
Re `  ( sqr `  A ) )  <_ 
0  /\  0  <_  ( Re `  ( sqr `  A ) ) ) ) )
9084, 86, 89mpbir2and 922 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  =  0 )
917, 12, 903eqtrd 2488 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Im `  ( _i  x.  ( sqr `  A
) ) )  =  0 )
925, 91reim0bd 13014 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496   _ici 9497    + caddc 9498    x. cmul 9500    < clt 9631    <_ cle 9632   -ucneg 9811    / cdiv 10213   2c2 10592   [,]cicc 11542   Recre 12911   Imcim 12912   sqrcsqrt 13047   expce 13778   sincsin 13780   cosccos 13781   picpi 13783   logclog 22918    ^c ccxp 22919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10986  df-uz 11092  df-q 11193  df-rp 11231  df-xneg 11328  df-xadd 11329  df-xmul 11330  df-ioo 11543  df-ioc 11544  df-ico 11545  df-icc 11546  df-fz 11683  df-fzo 11806  df-fl 11910  df-mod 11978  df-seq 12089  df-exp 12148  df-fac 12335  df-bc 12362  df-hash 12387  df-shft 12881  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-limsup 13275  df-clim 13292  df-rlim 13293  df-sum 13490  df-ef 13784  df-sin 13786  df-cos 13787  df-pi 13789  df-struct 14615  df-ndx 14616  df-slot 14617  df-base 14618  df-sets 14619  df-ress 14620  df-plusg 14691  df-mulr 14692  df-starv 14693  df-sca 14694  df-vsca 14695  df-ip 14696  df-tset 14697  df-ple 14698  df-ds 14700  df-unif 14701  df-hom 14702  df-cco 14703  df-rest 14801  df-topn 14802  df-0g 14820  df-gsum 14821  df-topgen 14822  df-pt 14823  df-prds 14826  df-xrs 14880  df-qtop 14885  df-imas 14886  df-xps 14888  df-mre 14964  df-mrc 14965  df-acs 14967  df-mgm 15850  df-sgrp 15889  df-mnd 15899  df-submnd 15945  df-mulg 16038  df-cntz 16333  df-cmn 16778  df-psmet 18389  df-xmet 18390  df-met 18391  df-bl 18392  df-mopn 18393  df-fbas 18394  df-fg 18395  df-cnfld 18399  df-top 19376  df-bases 19378  df-topon 19379  df-topsp 19380  df-cld 19497  df-ntr 19498  df-cls 19499  df-nei 19576  df-lp 19614  df-perf 19615  df-cn 19705  df-cnp 19706  df-haus 19793  df-tx 20040  df-hmeo 20233  df-fil 20324  df-fm 20416  df-flim 20417  df-flf 20418  df-xms 20800  df-ms 20801  df-tms 20802  df-cncf 21359  df-limc 22247  df-dv 22248  df-log 22920  df-cxp 22921
This theorem is referenced by:  cxpsqrt  23060
  Copyright terms: Public domain W3C validator