MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chto1ub Structured version   Visualization version   GIF version

Theorem chto1ub 24965
Description: The θ function is upper bounded by a linear term. Corollary of chtub 24737. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chto1ub (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)

Proof of Theorem chto1ub
StepHypRef Expression
1 rpssre 11719 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 rpre 11715 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4 chtcl 24635 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (θ‘𝑥) ∈ ℝ)
6 rerpdivcl 11737 . . . . . 6 (((θ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
75, 6mpancom 700 . . . . 5 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℝ)
87recnd 9947 . . . 4 (𝑥 ∈ ℝ+ → ((θ‘𝑥) / 𝑥) ∈ ℂ)
98adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((θ‘𝑥) / 𝑥) ∈ ℂ)
10 3re 10971 . . . 4 3 ∈ ℝ
1110a1i 11 . . 3 (⊤ → 3 ∈ ℝ)
12 2rp 11713 . . . . . 6 2 ∈ ℝ+
13 relogcl 24126 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
1412, 13ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
15 2re 10967 . . . . 5 2 ∈ ℝ
1614, 15remulcli 9933 . . . 4 ((log‘2) · 2) ∈ ℝ
1716a1i 11 . . 3 (⊤ → ((log‘2) · 2) ∈ ℝ)
18 chtge0 24638 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 ≤ (θ‘𝑥))
193, 18syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → 0 ≤ (θ‘𝑥))
20 rpregt0 11722 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21 divge0 10771 . . . . . . . 8 ((((θ‘𝑥) ∈ ℝ ∧ 0 ≤ (θ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((θ‘𝑥) / 𝑥))
225, 19, 20, 21syl21anc 1317 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 ≤ ((θ‘𝑥) / 𝑥))
237, 22absidd 14009 . . . . . 6 (𝑥 ∈ ℝ+ → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
2423adantr 480 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) = ((θ‘𝑥) / 𝑥))
257adantr 480 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ∈ ℝ)
2616a1i 11 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · 2) ∈ ℝ)
275adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℝ)
29 remulcl 9900 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
3015, 28, 29sylancr 694 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (2 · 𝑥) ∈ ℝ)
31 resubcl 10224 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑥) − 3) ∈ ℝ)
3230, 10, 31sylancl 693 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) ∈ ℝ)
33 remulcl 9900 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ ((2 · 𝑥) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
3414, 32, 33sylancr 694 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) ∈ ℝ)
35 remulcl 9900 . . . . . . . . . 10 (((log‘2) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3614, 30, 35sylancr 694 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · (2 · 𝑥)) ∈ ℝ)
3715a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℝ)
3810a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ∈ ℝ)
39 2lt3 11072 . . . . . . . . . . . 12 2 < 3
4039a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 3)
41 simpr 476 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 3 ≤ 𝑥)
4237, 38, 28, 40, 41ltletrd 10076 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 < 𝑥)
43 chtub 24737 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 2 < 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
4428, 42, 43syl2anc 691 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · ((2 · 𝑥) − 3)))
45 3pos 10991 . . . . . . . . . . . 12 0 < 3
4610, 45elrpii 11711 . . . . . . . . . . 11 3 ∈ ℝ+
47 ltsubrp 11742 . . . . . . . . . . 11 (((2 · 𝑥) ∈ ℝ ∧ 3 ∈ ℝ+) → ((2 · 𝑥) − 3) < (2 · 𝑥))
4830, 46, 47sylancl 693 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((2 · 𝑥) − 3) < (2 · 𝑥))
49 1lt2 11071 . . . . . . . . . . . . . 14 1 < 2
50 rplogcl 24154 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
5115, 49, 50mp2an 704 . . . . . . . . . . . . 13 (log‘2) ∈ ℝ+
52 elrp 11710 . . . . . . . . . . . . 13 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
5351, 52mpbi 219 . . . . . . . . . . . 12 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
5453a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
55 ltmul2 10753 . . . . . . . . . . 11 ((((2 · 𝑥) − 3) ∈ ℝ ∧ (2 · 𝑥) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5632, 30, 54, 55syl3anc 1318 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((2 · 𝑥) − 3) < (2 · 𝑥) ↔ ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥))))
5748, 56mpbid 221 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((log‘2) · ((2 · 𝑥) − 3)) < ((log‘2) · (2 · 𝑥)))
5827, 34, 36, 44, 57lttrd 10077 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < ((log‘2) · (2 · 𝑥)))
5914recni 9931 . . . . . . . . . 10 (log‘2) ∈ ℂ
6059a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (log‘2) ∈ ℂ)
61 2cnd 10970 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 2 ∈ ℂ)
623recnd 9947 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6362adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → 𝑥 ∈ ℂ)
6460, 61, 63mulassd 9942 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((log‘2) · 2) · 𝑥) = ((log‘2) · (2 · 𝑥)))
6558, 64breqtrrd 4611 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (θ‘𝑥) < (((log‘2) · 2) · 𝑥))
6620adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
67 ltdivmul2 10779 . . . . . . . 8 (((θ‘𝑥) ∈ ℝ ∧ ((log‘2) · 2) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6827, 26, 66, 67syl3anc 1318 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (((θ‘𝑥) / 𝑥) < ((log‘2) · 2) ↔ (θ‘𝑥) < (((log‘2) · 2) · 𝑥)))
6965, 68mpbird 246 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) < ((log‘2) · 2))
7025, 26, 69ltled 10064 . . . . 5 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → ((θ‘𝑥) / 𝑥) ≤ ((log‘2) · 2))
7124, 70eqbrtrd 4605 . . . 4 ((𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
7271adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 3 ≤ 𝑥)) → (abs‘((θ‘𝑥) / 𝑥)) ≤ ((log‘2) · 2))
732, 9, 11, 17, 72elo1d 14115 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1))
7473trud 1484 1 (𝑥 ∈ ℝ+ ↦ ((θ‘𝑥) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  +crp 11708  abscabs 13822  𝑂(1)co1 14065  logclog 24105  θccht 24617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cht 24623
This theorem is referenced by:  chebbnd2  24966  chpo1ub  24969
  Copyright terms: Public domain W3C validator