MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Structured version   Visualization version   GIF version

Theorem 2expltfac 15637
Description: The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))

Proof of Theorem 2expltfac
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . 4 (𝑥 = 4 → (2↑𝑥) = (2↑4))
2 2exp4 15632 . . . 4 (2↑4) = 16
31, 2syl6eq 2660 . . 3 (𝑥 = 4 → (2↑𝑥) = 16)
4 fveq2 6103 . . . 4 (𝑥 = 4 → (!‘𝑥) = (!‘4))
5 fac4 12930 . . . 4 (!‘4) = 24
64, 5syl6eq 2660 . . 3 (𝑥 = 4 → (!‘𝑥) = 24)
73, 6breq12d 4596 . 2 (𝑥 = 4 → ((2↑𝑥) < (!‘𝑥) ↔ 16 < 24))
8 oveq2 6557 . . 3 (𝑥 = 𝑛 → (2↑𝑥) = (2↑𝑛))
9 fveq2 6103 . . 3 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
108, 9breq12d 4596 . 2 (𝑥 = 𝑛 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑛) < (!‘𝑛)))
11 oveq2 6557 . . 3 (𝑥 = (𝑛 + 1) → (2↑𝑥) = (2↑(𝑛 + 1)))
12 fveq2 6103 . . 3 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1311, 12breq12d 4596 . 2 (𝑥 = (𝑛 + 1) → ((2↑𝑥) < (!‘𝑥) ↔ (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
14 oveq2 6557 . . 3 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
15 fveq2 6103 . . 3 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1614, 15breq12d 4596 . 2 (𝑥 = 𝑁 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑁) < (!‘𝑁)))
17 1nn0 11185 . . . 4 1 ∈ ℕ0
18 2nn0 11186 . . . 4 2 ∈ ℕ0
19 6nn0 11190 . . . 4 6 ∈ ℕ0
20 4nn0 11188 . . . 4 4 ∈ ℕ0
21 6lt10 11552 . . . 4 6 < 10
22 1lt2 11071 . . . 4 1 < 2
2317, 18, 19, 20, 21, 22decltc 11408 . . 3 16 < 24
2423a1i 11 . 2 (4 ∈ ℤ → 16 < 24)
25 2nn 11062 . . . . . . . . 9 2 ∈ ℕ
2625a1i 11 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℕ)
27 4nn 11064 . . . . . . . . . 10 4 ∈ ℕ
28 simpl 472 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ (ℤ‘4))
29 eluznn 11634 . . . . . . . . . 10 ((4 ∈ ℕ ∧ 𝑛 ∈ (ℤ‘4)) → 𝑛 ∈ ℕ)
3027, 28, 29sylancr 694 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ)
3130nnnn0d 11228 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ0)
3226, 31nnexpcld 12892 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℕ)
3332nnred 10912 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℝ)
34 2re 10967 . . . . . . 7 2 ∈ ℝ
3534a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ)
3633, 35remulcld 9949 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) ∈ ℝ)
3731faccld 12933 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ)
3837nnred 10912 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℝ)
3938, 35remulcld 9949 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ∈ ℝ)
4030nnred 10912 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℝ)
41 1red 9934 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ∈ ℝ)
4240, 41readdcld 9948 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (𝑛 + 1) ∈ ℝ)
4338, 42remulcld 9949 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · (𝑛 + 1)) ∈ ℝ)
44 2rp 11713 . . . . . . 7 2 ∈ ℝ+
4544a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ+)
46 simpr 476 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) < (!‘𝑛))
4733, 38, 45, 46ltmul1dd 11803 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · 2))
4837nnnn0d 11228 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ0)
4948nn0ge0d 11231 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 0 ≤ (!‘𝑛))
50 df-2 10956 . . . . . . 7 2 = (1 + 1)
5130nnge1d 10940 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ≤ 𝑛)
5241, 40, 41, 51leadd1dd 10520 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (1 + 1) ≤ (𝑛 + 1))
5350, 52syl5eqbr 4618 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ≤ (𝑛 + 1))
5435, 42, 38, 49, 53lemul2ad 10843 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ≤ ((!‘𝑛) · (𝑛 + 1)))
5536, 39, 43, 47, 54ltletrd 10076 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · (𝑛 + 1)))
56 2cnd 10970 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℂ)
5756, 31expp1d 12871 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) = ((2↑𝑛) · 2))
58 facp1 12927 . . . . 5 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5931, 58syl 17 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6055, 57, 593brtr4d 4615 . . 3 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1)))
6160ex 449 . 2 (𝑛 ∈ (ℤ‘4) → ((2↑𝑛) < (!‘𝑛) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
627, 10, 13, 16, 24, 61uzind4 11622 1 (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cn 10897  2c2 10947  4c4 10949  6c6 10951  0cn0 11169  cz 11254  cdc 11369  cuz 11563  +crp 11708  cexp 12722  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-fac 12923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator