Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   GIF version

Theorem uzfissfz 38483
 Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m (𝜑𝑀 ∈ ℤ)
uzfissfz.z 𝑍 = (ℤ𝑀)
uzfissfz.a (𝜑𝐴𝑍)
uzfissfz.fi (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
uzfissfz (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzfissfz
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 11578 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 uzfissfz.z . . . . . . 7 𝑍 = (ℤ𝑀)
54a1i 11 . . . . . 6 (𝜑𝑍 = (ℤ𝑀))
65eqcomd 2616 . . . . 5 (𝜑 → (ℤ𝑀) = 𝑍)
73, 6eleqtrd 2690 . . . 4 (𝜑𝑀𝑍)
87adantr 480 . . 3 ((𝜑𝐴 = ∅) → 𝑀𝑍)
9 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
10 0ss 3924 . . . . . 6 ∅ ⊆ (𝑀...𝑀)
1110a1i 11 . . . . 5 (𝐴 = ∅ → ∅ ⊆ (𝑀...𝑀))
129, 11eqsstrd 3602 . . . 4 (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀))
1312adantl 481 . . 3 ((𝜑𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀))
14 oveq2 6557 . . . . 5 (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀))
1514sseq2d 3596 . . . 4 (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀)))
1615rspcev 3282 . . 3 ((𝑀𝑍𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
178, 13, 16syl2anc 691 . 2 ((𝜑𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
18 uzfissfz.a . . . . 5 (𝜑𝐴𝑍)
1918adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑍)
20 uzssz 11583 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
214, 20eqsstri 3598 . . . . . . . 8 𝑍 ⊆ ℤ
2221a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℤ)
2318, 22sstrd 3578 . . . . . 6 (𝜑𝐴 ⊆ ℤ)
2423adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ)
259necon3bi 2808 . . . . . 6 𝐴 = ∅ → 𝐴 ≠ ∅)
2625adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
27 uzfissfz.fi . . . . . 6 (𝜑𝐴 ∈ Fin)
2827adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin)
29 suprfinzcl 11368 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3024, 26, 28, 29syl3anc 1318 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3119, 30sseldd 3569 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍)
321ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀 ∈ ℤ)
3321, 31sseldi 3566 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
3433adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
3524sselda 3568 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ ℤ)
3632, 34, 353jca 1235 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → (𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ))
3718sselda 3568 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗𝑍)
384a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑍 = (ℤ𝑀))
3937, 38eleqtrd 2690 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
40 eluzle 11576 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑀𝑗)
4241adantlr 747 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀𝑗)
43 zssre 11261 . . . . . . . . . 10 ℤ ⊆ ℝ
4423, 43syl6ss 3580 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
4544ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ⊆ ℝ)
4626adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ≠ ∅)
47 fimaxre2 10848 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4844, 27, 47syl2anc 691 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4948ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
50 simpr 476 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗𝐴)
51 suprub 10863 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5245, 46, 49, 50, 51syl31anc 1321 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5336, 42, 52jca32 556 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
54 elfz2 12204 . . . . . 6 (𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
5553, 54sylibr 223 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5655ralrimiva 2949 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
57 dfss3 3558 . . . 4 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5856, 57sylibr 223 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
59 oveq2 6557 . . . . 5 (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < )))
6059sseq2d 3596 . . . 4 (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
6160rspcev 3282 . . 3 ((sup(𝐴, ℝ, < ) ∈ 𝑍𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6231, 58, 61syl2anc 691 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6317, 62pm2.61dan 828 1 (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  ℝcr 9814   < clt 9953   ≤ cle 9954  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by:  sge0uzfsumgt  39337  sge0seq  39339  sge0reuz  39340  carageniuncllem2  39412  caratheodorylem2  39417
 Copyright terms: Public domain W3C validator