Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzfissfz Structured version   Visualization version   GIF version

Theorem uzfissfz 38483
Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzfissfz.m (𝜑𝑀 ∈ ℤ)
uzfissfz.z 𝑍 = (ℤ𝑀)
uzfissfz.a (𝜑𝐴𝑍)
uzfissfz.fi (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
uzfissfz (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem uzfissfz
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzfissfz.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2 uzid 11578 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
4 uzfissfz.z . . . . . . 7 𝑍 = (ℤ𝑀)
54a1i 11 . . . . . 6 (𝜑𝑍 = (ℤ𝑀))
65eqcomd 2616 . . . . 5 (𝜑 → (ℤ𝑀) = 𝑍)
73, 6eleqtrd 2690 . . . 4 (𝜑𝑀𝑍)
87adantr 480 . . 3 ((𝜑𝐴 = ∅) → 𝑀𝑍)
9 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
10 0ss 3924 . . . . . 6 ∅ ⊆ (𝑀...𝑀)
1110a1i 11 . . . . 5 (𝐴 = ∅ → ∅ ⊆ (𝑀...𝑀))
129, 11eqsstrd 3602 . . . 4 (𝐴 = ∅ → 𝐴 ⊆ (𝑀...𝑀))
1312adantl 481 . . 3 ((𝜑𝐴 = ∅) → 𝐴 ⊆ (𝑀...𝑀))
14 oveq2 6557 . . . . 5 (𝑘 = 𝑀 → (𝑀...𝑘) = (𝑀...𝑀))
1514sseq2d 3596 . . . 4 (𝑘 = 𝑀 → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...𝑀)))
1615rspcev 3282 . . 3 ((𝑀𝑍𝐴 ⊆ (𝑀...𝑀)) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
178, 13, 16syl2anc 691 . 2 ((𝜑𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
18 uzfissfz.a . . . . 5 (𝜑𝐴𝑍)
1918adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑍)
20 uzssz 11583 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
214, 20eqsstri 3598 . . . . . . . 8 𝑍 ⊆ ℤ
2221a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℤ)
2318, 22sstrd 3578 . . . . . 6 (𝜑𝐴 ⊆ ℤ)
2423adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℤ)
259necon3bi 2808 . . . . . 6 𝐴 = ∅ → 𝐴 ≠ ∅)
2625adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
27 uzfissfz.fi . . . . . 6 (𝜑𝐴 ∈ Fin)
2827adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ Fin)
29 suprfinzcl 11368 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3024, 26, 28, 29syl3anc 1318 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3119, 30sseldd 3569 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ 𝑍)
321ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀 ∈ ℤ)
3321, 31sseldi 3566 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
3433adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
3524sselda 3568 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ ℤ)
3632, 34, 353jca 1235 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → (𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ))
3718sselda 3568 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗𝑍)
384a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑍 = (ℤ𝑀))
3937, 38eleqtrd 2690 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 ∈ (ℤ𝑀))
40 eluzle 11576 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑀𝑗)
4241adantlr 747 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑀𝑗)
43 zssre 11261 . . . . . . . . . 10 ℤ ⊆ ℝ
4423, 43syl6ss 3580 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
4544ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ⊆ ℝ)
4626adantr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝐴 ≠ ∅)
47 fimaxre2 10848 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4844, 27, 47syl2anc 691 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4948ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
50 simpr 476 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗𝐴)
51 suprub 10863 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5245, 46, 49, 50, 51syl31anc 1321 . . . . . . 7 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ≤ sup(𝐴, ℝ, < ))
5336, 42, 52jca32 556 . . . . . 6 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
54 elfz2 12204 . . . . . 6 (𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ ((𝑀 ∈ ℤ ∧ sup(𝐴, ℝ, < ) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀𝑗𝑗 ≤ sup(𝐴, ℝ, < ))))
5553, 54sylibr 223 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝑗𝐴) → 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5655ralrimiva 2949 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
57 dfss3 3558 . . . 4 (𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )) ↔ ∀𝑗𝐴 𝑗 ∈ (𝑀...sup(𝐴, ℝ, < )))
5856, 57sylibr 223 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
59 oveq2 6557 . . . . 5 (𝑘 = sup(𝐴, ℝ, < ) → (𝑀...𝑘) = (𝑀...sup(𝐴, ℝ, < )))
6059sseq2d 3596 . . . 4 (𝑘 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑘) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
6160rspcev 3282 . . 3 ((sup(𝐴, ℝ, < ) ∈ 𝑍𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6231, 58, 61syl2anc 691 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
6317, 62pm2.61dan 828 1 (𝜑 → ∃𝑘𝑍 𝐴 ⊆ (𝑀...𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814   < clt 9953  cle 9954  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  sge0uzfsumgt  39337  sge0seq  39339  sge0reuz  39340  carageniuncllem2  39412  caratheodorylem2  39417
  Copyright terms: Public domain W3C validator