MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprfinzcl Structured version   Visualization version   GIF version

Theorem suprfinzcl 11368
Description: The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
Assertion
Ref Expression
suprfinzcl ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Proof of Theorem suprfinzcl
Dummy variables 𝑎 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 11261 . . . . . 6 ℤ ⊆ ℝ
2 ltso 9997 . . . . . 6 < Or ℝ
3 soss 4977 . . . . . 6 (ℤ ⊆ ℝ → ( < Or ℝ → < Or ℤ))
41, 2, 3mp2 9 . . . . 5 < Or ℤ
54a1i 11 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → < Or ℤ)
6 simp3 1056 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin)
7 simp2 1055 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
8 simp1 1054 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℤ)
9 fisup2g 8257 . . . 4 (( < Or ℤ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℤ)) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
105, 6, 7, 8, 9syl13anc 1320 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)))
11 id 22 . . . . . . 7 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
1211, 1syl6ss 3580 . . . . . 6 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℝ)
13123ad2ant1 1075 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ⊆ ℝ)
14 ssrexv 3630 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
1513, 14syl 17 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏))))
16 ssel2 3563 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℤ)
1716zred 11358 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
1817ex 449 . . . . . . . . . . . . 13 (𝐴 ⊆ ℤ → (𝑎𝐴𝑎 ∈ ℝ))
19183ad2ant1 1075 . . . . . . . . . . . 12 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (𝑎𝐴𝑎 ∈ ℝ))
2019adantr 480 . . . . . . . . . . 11 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (𝑎𝐴𝑎 ∈ ℝ))
2120imp 444 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
22 simplr 788 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → 𝑟 ∈ ℝ)
2321, 22lenltd 10062 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (𝑎𝑟 ↔ ¬ 𝑟 < 𝑎))
2423bicomd 212 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) ∧ 𝑎𝐴) → (¬ 𝑟 < 𝑎𝑎𝑟))
2524ralbidva 2968 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ↔ ∀𝑎𝐴 𝑎𝑟))
2625biimpd 218 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → (∀𝑎𝐴 ¬ 𝑟 < 𝑎 → ∀𝑎𝐴 𝑎𝑟))
2726adantrd 483 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ∧ 𝑟 ∈ ℝ) → ((∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∀𝑎𝐴 𝑎𝑟))
2827reximdva 3000 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟 ∈ ℝ (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
2915, 28syld 46 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → (∃𝑟𝐴 (∀𝑎𝐴 ¬ 𝑟 < 𝑎 ∧ ∀𝑎 ∈ ℤ (𝑎 < 𝑟 → ∃𝑏𝐴 𝑎 < 𝑏)) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟))
3010, 29mpd 15 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟)
31 suprzcl 11333 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑎𝐴 𝑎𝑟) → sup(𝐴, ℝ, < ) ∈ 𝐴)
3230, 31syld3an3 1363 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   class class class wbr 4583   Or wor 4958  Fincfn 7841  supcsup 8229  cr 9814   < clt 9953  cle 9954  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255
This theorem is referenced by:  uzfissfz  38483  ssuzfz  38506  sge0isum  39320
  Copyright terms: Public domain W3C validator