Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   GIF version

Theorem sge0uzfsumgt 39337
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p 𝑘𝜑
sge0uzfsumgt.h (𝜑𝐾 ∈ ℤ)
sge0uzfsumgt.z 𝑍 = (ℤ𝐾)
sge0uzfsumgt.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0uzfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0uzfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
Assertion
Ref Expression
sge0uzfsumgt (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sge0uzfsumgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3 𝑘𝜑
2 sge0uzfsumgt.z . . . . 5 𝑍 = (ℤ𝐾)
3 fvex 6113 . . . . 5 (ℤ𝐾) ∈ V
42, 3eqeltri 2684 . . . 4 𝑍 ∈ V
54a1i 11 . . 3 (𝜑𝑍 ∈ V)
6 sge0uzfsumgt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
7 sge0uzfsumgt.c . . 3 (𝜑𝐶 ∈ ℝ)
8 sge0uzfsumgt.l . . 3 (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
91, 5, 6, 7, 8sge0gtfsumgt 39336 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵)
10 sge0uzfsumgt.h . . . . . . 7 (𝜑𝐾 ∈ ℤ)
11103ad2ant1 1075 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝐾 ∈ ℤ)
12 elpwinss 38241 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
13123ad2ant2 1076 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥𝑍)
14 elinel2 3762 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
15143ad2ant2 1076 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
1611, 2, 13, 15uzfissfz 38483 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚))
177ad2antrr 758 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 ∈ ℝ)
18 nfv 1830 . . . . . . . . . . . . 13 𝑘 𝑥 ⊆ (𝐾...𝑚)
191, 18nfan 1816 . . . . . . . . . . . 12 𝑘(𝜑𝑥 ⊆ (𝐾...𝑚))
20 fzfid 12634 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → (𝐾...𝑚) ∈ Fin)
21 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ⊆ (𝐾...𝑚))
2220, 21ssfid 8068 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ∈ Fin)
23 simpll 786 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝜑)
2421sselda 3568 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝑘 ∈ (𝐾...𝑚))
25 rge0ssre 12151 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
26 fzssuz 12253 . . . . . . . . . . . . . . . . 17 (𝐾...𝑚) ⊆ (ℤ𝐾)
2726, 2sseqtr4i 3601 . . . . . . . . . . . . . . . 16 (𝐾...𝑚) ⊆ 𝑍
28 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐾...𝑚) → 𝑘 ∈ (𝐾...𝑚))
2927, 28sseldi 3566 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐾...𝑚) → 𝑘𝑍)
3029, 6sylan2 490 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ (0[,)+∞))
3125, 30sseldi 3566 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
3223, 24, 31syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
3319, 22, 32fsumreclf 38643 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
3433adantlr 747 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
35 fzfid 12634 . . . . . . . . . . . 12 (𝜑 → (𝐾...𝑚) ∈ Fin)
361, 35, 31fsumreclf 38643 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
3736ad2antrr 758 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
38 simplr 788 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘𝑥 𝐵)
3931adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
40 0xr 9965 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4140a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ∈ ℝ*)
42 pnfxr 9971 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
4342a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → +∞ ∈ ℝ*)
44 icogelb 12096 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
4541, 43, 30, 44syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4645adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4719, 20, 39, 46, 21fsumlessf 38644 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4847adantlr 747 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4917, 34, 37, 38, 48ltletrd 10076 . . . . . . . . 9 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
5049ex 449 . . . . . . . 8 ((𝜑𝐶 < Σ𝑘𝑥 𝐵) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5150adantr 480 . . . . . . 7 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
52513adantl2 1211 . . . . . 6 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5352reximdva 3000 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → (∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5416, 53mpd 15 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
55543exp 1256 . . 3 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)))
5655rexlimdv 3012 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
579, 56mpd 15 1 (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cz 11254  cuz 11563  [,)cico 12048  ...cfz 12197  Σcsu 14264  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  hoidmvlelem3  39487
  Copyright terms: Public domain W3C validator