MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsums Structured version   Visualization version   GIF version

Theorem telgsums 18213
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
telgsums.b 𝐵 = (Base‘𝐺)
telgsums.g (𝜑𝐺 ∈ Abel)
telgsums.m = (-g𝐺)
telgsums.0 0 = (0g𝐺)
telgsums.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
telgsums.s (𝜑𝑆 ∈ ℕ0)
telgsums.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
telgsums (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑆,𝑖,𝑘   0 ,𝑖,𝑘   𝜑,𝑖   ,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsums
StepHypRef Expression
1 telgsums.b . . 3 𝐵 = (Base‘𝐺)
2 telgsums.0 . . 3 0 = (0g𝐺)
3 telgsums.g . . . 4 (𝜑𝐺 ∈ Abel)
4 ablcmn 18022 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
53, 4syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
6 ablgrp 18021 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐺 ∈ Grp)
9 simpr 476 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
10 telgsums.f . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1110adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
12 rspcsbela 3958 . . . . . 6 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
139, 11, 12syl2anc 691 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐶𝐵)
14 peano2nn0 11210 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
15 rspcsbela 3958 . . . . . 6 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
1614, 10, 15syl2anr 494 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐶𝐵)
17 telgsums.m . . . . . 6 = (-g𝐺)
181, 17grpsubcl 17318 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
198, 13, 16, 18syl3anc 1318 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2019ralrimiva 2949 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
21 telgsums.s . . 3 (𝜑𝑆 ∈ ℕ0)
22 telgsums.u . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
23 rspsbca 3485 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
24 vex 3176 . . . . . . . . . . . 12 𝑖 ∈ V
25 sbcimg 3444 . . . . . . . . . . . . 13 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 )))
26 sbcbr2g 4640 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖 / 𝑘𝑘))
27 csbvarg 3955 . . . . . . . . . . . . . . . 16 (𝑖 ∈ V → 𝑖 / 𝑘𝑘 = 𝑖)
2827breq2d 4595 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → (𝑆 < 𝑖 / 𝑘𝑘𝑆 < 𝑖))
2926, 28bitrd 267 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖))
30 sbceq1g 3940 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝐶 = 0𝑖 / 𝑘𝐶 = 0 ))
3129, 30imbi12d 333 . . . . . . . . . . . . 13 (𝑖 ∈ V → (([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3225, 31bitrd 267 . . . . . . . . . . . 12 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3324, 32ax-mp 5 . . . . . . . . . . 11 ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3423, 33sylib 207 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3534expcom 450 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3622, 35syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3736imp31 447 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 / 𝑘𝐶 = 0 )
3821nn0red 11229 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
3938adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ ℝ)
4039adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 ∈ ℝ)
41 nn0re 11178 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4241ad2antlr 759 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 ∈ ℝ)
4314ad2antlr 759 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℕ0)
4443nn0red 11229 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℝ)
45 simpr 476 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < 𝑖)
4642ltp1d 10833 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 < (𝑖 + 1))
4740, 42, 44, 45, 46lttrd 10077 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < (𝑖 + 1))
4847ex 449 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖𝑆 < (𝑖 + 1)))
49 rspsbca 3485 . . . . . . . . . . 11 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
50 ovex 6577 . . . . . . . . . . . 12 (𝑖 + 1) ∈ V
51 sbcimg 3444 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 )))
52 sbcbr2g 4640 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1) / 𝑘𝑘))
53 csbvarg 3955 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ V → (𝑖 + 1) / 𝑘𝑘 = (𝑖 + 1))
5453breq2d 4595 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → (𝑆 < (𝑖 + 1) / 𝑘𝑘𝑆 < (𝑖 + 1)))
5552, 54bitrd 267 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1)))
56 sbceq1g 3940 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝐶 = 0(𝑖 + 1) / 𝑘𝐶 = 0 ))
5755, 56imbi12d 333 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → (([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5851, 57bitrd 267 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5950, 58ax-mp 5 . . . . . . . . . . 11 ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6049, 59sylib 207 . . . . . . . . . 10 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6114, 22, 60syl2anr 494 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6248, 61syld 46 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖(𝑖 + 1) / 𝑘𝐶 = 0 ))
6362imp 444 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) / 𝑘𝐶 = 0 )
6437, 63oveq12d 6567 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ( 0 0 ))
658adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝐺 ∈ Grp)
661, 2grpidcl 17273 . . . . . . . 8 (𝐺 ∈ Grp → 0𝐵)
6765, 66jccir 560 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝐺 ∈ Grp ∧ 0𝐵))
681, 2, 17grpsubid 17322 . . . . . . 7 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 0 ) = 0 )
6967, 68syl 17 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ( 0 0 ) = 0 )
7064, 69eqtrd 2644 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 )
7170ex 449 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
7271ralrimiva 2949 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
731, 2, 5, 20, 21, 72gsummptnn0fzv 18206 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
74 fzssuz 12253 . . . . . 6 (0...(𝑆 + 1)) ⊆ (ℤ‘0)
7574a1i 11 . . . . 5 (𝜑 → (0...(𝑆 + 1)) ⊆ (ℤ‘0))
76 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
7775, 76syl6sseqr 3615 . . . 4 (𝜑 → (0...(𝑆 + 1)) ⊆ ℕ0)
78 ssralv 3629 . . . 4 ((0...(𝑆 + 1)) ⊆ ℕ0 → (∀𝑘 ∈ ℕ0 𝐶𝐵 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵))
7977, 10, 78sylc 63 . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵)
801, 3, 17, 21, 79telgsumfz0s 18211 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶))
81 peano2nn0 11210 . . . . . 6 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
8221, 81syl 17 . . . . 5 (𝜑 → (𝑆 + 1) ∈ ℕ0)
8338ltp1d 10833 . . . . 5 (𝜑𝑆 < (𝑆 + 1))
84 rspsbca 3485 . . . . . . 7 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
85 ovex 6577 . . . . . . . 8 (𝑆 + 1) ∈ V
86 sbcimg 3444 . . . . . . . . 9 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 )))
87 sbcbr2g 4640 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1) / 𝑘𝑘))
88 csbvarg 3955 . . . . . . . . . . . 12 ((𝑆 + 1) ∈ V → (𝑆 + 1) / 𝑘𝑘 = (𝑆 + 1))
8988breq2d 4595 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → (𝑆 < (𝑆 + 1) / 𝑘𝑘𝑆 < (𝑆 + 1)))
9087, 89bitrd 267 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1)))
91 sbceq1g 3940 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝐶 = 0(𝑆 + 1) / 𝑘𝐶 = 0 ))
9290, 91imbi12d 333 . . . . . . . . 9 ((𝑆 + 1) ∈ V → (([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9386, 92bitrd 267 . . . . . . . 8 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9485, 93ax-mp 5 . . . . . . 7 ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9584, 94sylib 207 . . . . . 6 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9695ex 449 . . . . 5 ((𝑆 + 1) ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9782, 22, 83, 96syl3c 64 . . . 4 (𝜑(𝑆 + 1) / 𝑘𝐶 = 0 )
9897oveq2d 6565 . . 3 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = (0 / 𝑘𝐶 0 ))
99 0nn0 11184 . . . . . 6 0 ∈ ℕ0
10099a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
101 rspcsbela 3958 . . . . 5 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 0 / 𝑘𝐶𝐵)
102100, 10, 101syl2anc 691 . . . 4 (𝜑0 / 𝑘𝐶𝐵)
1031, 2, 17grpsubid1 17323 . . . 4 ((𝐺 ∈ Grp ∧ 0 / 𝑘𝐶𝐵) → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
1047, 102, 103syl2anc 691 . . 3 (𝜑 → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
10598, 104eqtrd 2644 . 2 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = 0 / 𝑘𝐶)
10673, 80, 1053eqtrd 2648 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  [wsbc 3402  csb 3499  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  0cn0 11169  cuz 11563  ...cfz 12197  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  Grpcgrp 17245  -gcsg 17247  CMndccmn 18016  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019
This theorem is referenced by:  telgsum  18214
  Copyright terms: Public domain W3C validator