Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimg Structured version   Visualization version   GIF version

Theorem sbcimg 3444
 Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
sbcimg (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcimg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3405 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
2 dfsbcq2 3405 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 dfsbcq2 3405 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
42, 3imbi12d 333 . 2 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
5 sbim 2383 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
61, 4, 5vtoclbg 3240 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  [wsb 1867   ∈ wcel 1977  [wsbc 3402 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175  df-sbc 3403 This theorem is referenced by:  sbcim1  3449  sbceqal  3454  sbc19.21g  3469  sbcssg  4035  iota4an  5787  sbcfung  5827  riotass2  6537  tfinds2  6955  telgsums  18213  bnj538OLD  30064  bnj110  30182  bnj92  30186  bnj539  30215  bnj540  30216  f1omptsnlem  32359  mptsnunlem  32361  topdifinffinlem  32371  relowlpssretop  32388  rdgeqoa  32394  sbcimi  33082  cdlemkid3N  35239  cdlemkid4  35240  cdlemk35s  35243  cdlemk39s  35245  cdlemk42  35247  frege77  37254  frege116  37293  frege118  37295  sbcim2g  37769  sbcssOLD  37777  onfrALTlem5  37778  sbcim2gVD  38133  sbcssgVD  38141  onfrALTlem5VD  38143  iccelpart  39971
 Copyright terms: Public domain W3C validator