Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj538OLD | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Obsolete version of bnj538 30063 as of 30-Mar-2020. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj538OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bnj538OLD | ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2901 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | 1 | sbcbii 3458 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) |
3 | bnj538OLD.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | sbcimg 3444 | . . . . . 6 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑))) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
6 | 3 | bnj525 30061 | . . . . . 6 ⊢ ([𝐴 / 𝑦]𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵) |
7 | 6 | imbi1i 338 | . . . . 5 ⊢ (([𝐴 / 𝑦]𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑) ↔ (𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
8 | 5, 7 | bitri 263 | . . . 4 ⊢ ([𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ (𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
9 | 8 | albii 1737 | . . 3 ⊢ (∀𝑥[𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) |
10 | sbcal 3452 | . . 3 ⊢ ([𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥[𝐴 / 𝑦](𝑥 ∈ 𝐵 → 𝜑)) | |
11 | df-ral 2901 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → [𝐴 / 𝑦]𝜑)) | |
12 | 9, 10, 11 | 3bitr4i 291 | . 2 ⊢ ([𝐴 / 𝑦]∀𝑥(𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
13 | 2, 12 | bitri 263 | 1 ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 [wsbc 3402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ral 2901 df-v 3175 df-sbc 3403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |