Step | Hyp | Ref
| Expression |
1 | | frege77.x |
. . 3
⊢ 𝑋 ∈ 𝑈 |
2 | | frege77.y |
. . 3
⊢ 𝑌 ∈ 𝑉 |
3 | | frege77.r |
. . 3
⊢ 𝑅 ∈ 𝑊 |
4 | 1, 2, 3 | dffrege76 37253 |
. 2
⊢
(∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) |
5 | | frege77.a |
. . . 4
⊢ 𝐴 ∈ 𝐵 |
6 | 5 | frege68c 37245 |
. . 3
⊢
((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → [𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)))) |
7 | | sbcimg 3444 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓 → [𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)))) |
8 | 5, 7 | ax-mp 5 |
. . . 4
⊢
([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ ([𝐴 / 𝑓]𝑅 hereditary 𝑓 → [𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | | sbcheg 37093 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓]𝑅 hereditary 𝑓 ↔ ⦋𝐴 / 𝑓⦌𝑅 hereditary ⦋𝐴 / 𝑓⦌𝑓)) |
10 | 5, 9 | ax-mp 5 |
. . . . . 6
⊢
([𝐴 / 𝑓]𝑅 hereditary 𝑓 ↔ ⦋𝐴 / 𝑓⦌𝑅 hereditary ⦋𝐴 / 𝑓⦌𝑓) |
11 | | csbconstg 3512 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑓⦌𝑅 = 𝑅) |
12 | 5, 11 | ax-mp 5 |
. . . . . . 7
⊢
⦋𝐴 /
𝑓⦌𝑅 = 𝑅 |
13 | | csbvarg 3955 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑓⦌𝑓 = 𝐴) |
14 | 5, 13 | ax-mp 5 |
. . . . . . 7
⊢
⦋𝐴 /
𝑓⦌𝑓 = 𝐴 |
15 | | heeq12 37090 |
. . . . . . 7
⊢
((⦋𝐴 /
𝑓⦌𝑅 = 𝑅 ∧ ⦋𝐴 / 𝑓⦌𝑓 = 𝐴) → (⦋𝐴 / 𝑓⦌𝑅 hereditary ⦋𝐴 / 𝑓⦌𝑓 ↔ 𝑅 hereditary 𝐴)) |
16 | 12, 14, 15 | mp2an 704 |
. . . . . 6
⊢
(⦋𝐴 /
𝑓⦌𝑅 hereditary ⦋𝐴 / 𝑓⦌𝑓 ↔ 𝑅 hereditary 𝐴) |
17 | 10, 16 | bitri 263 |
. . . . 5
⊢
([𝐴 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝐴) |
18 | | sbcimg 3444 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓) ↔ ([𝐴 / 𝑓]∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝐴 / 𝑓]𝑌 ∈ 𝑓))) |
19 | 5, 18 | ax-mp 5 |
. . . . . 6
⊢
([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓) ↔ ([𝐴 / 𝑓]∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝐴 / 𝑓]𝑌 ∈ 𝑓)) |
20 | | sbcal 3452 |
. . . . . . . 8
⊢
([𝐴 / 𝑓]∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ ∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎 → 𝑎 ∈ 𝑓)) |
21 | | sbcimg 3444 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓](𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎 → [𝐴 / 𝑓]𝑎 ∈ 𝑓))) |
22 | 5, 21 | ax-mp 5 |
. . . . . . . . . 10
⊢
([𝐴 / 𝑓](𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ ([𝐴 / 𝑓]𝑋𝑅𝑎 → [𝐴 / 𝑓]𝑎 ∈ 𝑓)) |
23 | | sbcg 3470 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑎)) |
24 | 5, 23 | ax-mp 5 |
. . . . . . . . . . 11
⊢
([𝐴 / 𝑓]𝑋𝑅𝑎 ↔ 𝑋𝑅𝑎) |
25 | | sbcel2gv 3463 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓]𝑎 ∈ 𝑓 ↔ 𝑎 ∈ 𝐴)) |
26 | 5, 25 | ax-mp 5 |
. . . . . . . . . . 11
⊢
([𝐴 / 𝑓]𝑎 ∈ 𝑓 ↔ 𝑎 ∈ 𝐴) |
27 | 24, 26 | imbi12i 339 |
. . . . . . . . . 10
⊢
(([𝐴 / 𝑓]𝑋𝑅𝑎 → [𝐴 / 𝑓]𝑎 ∈ 𝑓) ↔ (𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) |
28 | 22, 27 | bitri 263 |
. . . . . . . . 9
⊢
([𝐴 / 𝑓](𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ (𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) |
29 | 28 | albii 1737 |
. . . . . . . 8
⊢
(∀𝑎[𝐴 / 𝑓](𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) |
30 | 20, 29 | bitri 263 |
. . . . . . 7
⊢
([𝐴 / 𝑓]∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) |
31 | | sbcel2gv 3463 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝐴)) |
32 | 5, 31 | ax-mp 5 |
. . . . . . 7
⊢
([𝐴 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝐴) |
33 | 30, 32 | imbi12i 339 |
. . . . . 6
⊢
(([𝐴 / 𝑓]∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → [𝐴 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴)) |
34 | 19, 33 | bitri 263 |
. . . . 5
⊢
([𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓) ↔ (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴)) |
35 | 17, 34 | imbi12i 339 |
. . . 4
⊢
(([𝐴 / 𝑓]𝑅 hereditary 𝑓 → [𝐴 / 𝑓](∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) |
36 | 8, 35 | bitri 263 |
. . 3
⊢
([𝐴 / 𝑓](𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) |
37 | 6, 36 | syl6ib 240 |
. 2
⊢
((∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝑌 ∈ 𝑓)) ↔ 𝑋(t+‘𝑅)𝑌) → (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴)))) |
38 | 4, 37 | ax-mp 5 |
1
⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) |