Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem60 Structured version   Visualization version   GIF version

Theorem stoweidlem60 38953
Description: This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem60.1 𝑡𝐹
stoweidlem60.2 𝑡𝜑
stoweidlem60.3 𝐾 = (topGen‘ran (,))
stoweidlem60.4 𝑇 = 𝐽
stoweidlem60.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem60.6 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem60.7 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem60.8 (𝜑𝐽 ∈ Comp)
stoweidlem60.9 (𝜑𝑇 ≠ ∅)
stoweidlem60.10 (𝜑𝐴𝐶)
stoweidlem60.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.13 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem60.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem60.15 (𝜑𝐹𝐶)
stoweidlem60.16 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem60.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem60.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem60 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Distinct variable groups:   𝑓,𝑔,𝑗,𝑛,𝑡,𝐴,𝑞,𝑟   𝑦,𝑓,𝑗,𝑛,𝑞,𝑟,𝑡,𝐴   𝐵,𝑓,𝑔   𝐷,𝑓,𝑔   𝑓,𝐸,𝑔,𝑗,𝑛,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑗,𝑛,𝑡   𝜑,𝑓,𝑔,𝑗,𝑛   𝑔,𝐹,𝑗,𝑛   𝐵,𝑞,𝑟,𝑦   𝐷,𝑞,𝑟,𝑦   𝑇,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦   𝐸,𝑟,𝑦   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡,𝑗,𝑛)   𝐶(𝑦,𝑡,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)   𝐷(𝑡,𝑗,𝑛)   𝐸(𝑞)   𝐹(𝑦,𝑡,𝑓,𝑟,𝑞)   𝐽(𝑦,𝑗,𝑛,𝑞)   𝐾(𝑦,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)

Proof of Theorem stoweidlem60
Dummy variables 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 10904 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
21adantl 481 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
3 stoweidlem60.17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ+)
43rpred 11748 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
54adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ∈ ℝ)
63rpne0d 11753 . . . . . . . . . . . . 13 (𝜑𝐸 ≠ 0)
76adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ≠ 0)
82, 5, 7redivcld 10732 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝐸) ∈ ℝ)
9 1red 9934 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
108, 9readdcld 9948 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
1110adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
12 arch 11166 . . . . . . . . 9 (((𝑚 / 𝐸) + 1) ∈ ℝ → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
1311, 12syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
14 stoweidlem60.2 . . . . . . . . . . . . . . 15 𝑡𝜑
15 nfv 1830 . . . . . . . . . . . . . . 15 𝑡 𝑚 ∈ ℕ
1614, 15nfan 1816 . . . . . . . . . . . . . 14 𝑡(𝜑𝑚 ∈ ℕ)
17 nfra1 2925 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (𝐹𝑡) < 𝑚
1816, 17nfan 1816 . . . . . . . . . . . . 13 𝑡((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
19 nfv 1830 . . . . . . . . . . . . 13 𝑡 𝑛 ∈ ℕ
2018, 19nfan 1816 . . . . . . . . . . . 12 𝑡(((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ)
21 nfv 1830 . . . . . . . . . . . 12 𝑡((𝑚 / 𝐸) + 1) < 𝑛
2220, 21nfan 1816 . . . . . . . . . . 11 𝑡((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛)
23 simp-5l 804 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝜑)
24 stoweidlem60.3 . . . . . . . . . . . . . . . 16 𝐾 = (topGen‘ran (,))
25 stoweidlem60.4 . . . . . . . . . . . . . . . 16 𝑇 = 𝐽
26 stoweidlem60.5 . . . . . . . . . . . . . . . 16 𝐶 = (𝐽 Cn 𝐾)
27 stoweidlem60.15 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐶)
2824, 25, 26, 27fcnre 38207 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑇⟶ℝ)
2928fnvinran 38196 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3023, 29sylancom 698 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
31 simp-5r 805 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ)
3231nnred 10912 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℝ)
33 simpllr 795 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
3433nnred 10912 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
35 1red 9934 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 1 ∈ ℝ)
3634, 35resubcld 10337 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝑛 − 1) ∈ ℝ)
3723, 4syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
3836, 37remulcld 9949 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑛 − 1) · 𝐸) ∈ ℝ)
39 simpllr 795 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
4039r19.21bi 2916 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑚)
41 simplr 788 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑚 / 𝐸) + 1) < 𝑛)
42 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) + 1) < 𝑛)
43 simpl1 1057 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝜑)
44 simpl2 1058 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℕ)
4543, 44, 8syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) ∈ ℝ)
46 1red 9934 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 1 ∈ ℝ)
47 simpl3 1059 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℕ)
4847nnred 10912 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℝ)
4945, 46, 48ltaddsubd 10506 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (((𝑚 / 𝐸) + 1) < 𝑛 ↔ (𝑚 / 𝐸) < (𝑛 − 1)))
5042, 49mpbid 221 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) < (𝑛 − 1))
5113ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℝ)
5251adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℝ)
5348, 46resubcld 10337 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑛 − 1) ∈ ℝ)
5443ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝐸 ∈ ℝ)
563rpgt0d 11751 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐸)
5743, 56syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 0 < 𝐸)
58 ltdivmul2 10779 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
5952, 53, 55, 57, 58syl112anc 1322 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
6050, 59mpbid 221 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 < ((𝑛 − 1) · 𝐸))
6123, 31, 33, 41, 60syl31anc 1321 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 < ((𝑛 − 1) · 𝐸))
6230, 32, 38, 40, 61lttrd 10077 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6362ex 449 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑡𝑇 → (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6422, 63ralrimi 2940 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6564ex 449 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) → (((𝑚 / 𝐸) + 1) < 𝑛 → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6665reximdva 3000 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → (∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6713, 66mpd 15 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
68 stoweidlem60.1 . . . . . . . 8 𝑡𝐹
69 stoweidlem60.8 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
70 stoweidlem60.9 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
7168, 14, 24, 69, 25, 70, 26, 27rfcnnnub 38218 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
7267, 71r19.29a 3060 . . . . . 6 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
73 df-rex 2902 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7472, 73sylib 207 . . . . 5 (𝜑 → ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
75 simpr 476 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7614, 19nfan 1816 . . . . . . . . . . 11 𝑡(𝜑𝑛 ∈ ℕ)
77 stoweidlem60.6 . . . . . . . . . . 11 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
78 stoweidlem60.7 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
79 eqid 2610 . . . . . . . . . . 11 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
80 eqid 2610 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))}) = (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))})
8169adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐽 ∈ Comp)
82 stoweidlem60.10 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
8382adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐶)
84 stoweidlem60.11 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
85843adant1r 1311 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
86 stoweidlem60.12 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
87863adant1r 1311 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
88 stoweidlem60.13 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
8988adantlr 747 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
90 stoweidlem60.14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9190adantlr 747 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9227adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹𝐶)
933adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
94 stoweidlem60.18 . . . . . . . . . . . 12 (𝜑𝐸 < (1 / 3))
9594adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 < (1 / 3))
96 simpr 476 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9768, 76, 24, 25, 26, 77, 78, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 96stoweidlem59 38952 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
9897adantrr 749 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
99 19.42v 1905 . . . . . . . . 9 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10075, 98, 99sylanbrc 695 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
101 3anass 1035 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
102101exbii 1764 . . . . . . . 8 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
103100, 102sylibr 223 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
104103ex 449 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
105104eximdv 1833 . . . . 5 (𝜑 → (∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10674, 105mpd 15 . . . 4 (𝜑 → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
107 simpl 472 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝜑)
108 simpr1l 1111 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑛 ∈ ℕ)
109 simpr2 1061 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑥:(0...𝑛)⟶𝐴)
110 nfv 1830 . . . . . . . . . 10 𝑡 𝑥:(0...𝑛)⟶𝐴
11114, 19, 110nf3an 1819 . . . . . . . . 9 𝑡(𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴)
112 simp2 1055 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑛 ∈ ℕ)
113 simp3 1056 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑥:(0...𝑛)⟶𝐴)
114 simp1 1054 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝜑)
115114, 84syl3an1 1351 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116114, 86syl3an1 1351 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
117883ad2antl1 1216 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11833ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ+)
119118rpred 11748 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ)
12082sselda 3568 . . . . . . . . . . 11 ((𝜑𝑓𝐴) → 𝑓𝐶)
12124, 25, 26, 120fcnre 38207 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1221213ad2antl1 1216 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
123111, 112, 113, 115, 116, 117, 119, 122stoweidlem17 38910 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
124107, 108, 109, 123syl3anc 1318 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
125 nfv 1830 . . . . . . . . 9 𝑗𝜑
126 nfv 1830 . . . . . . . . . 10 𝑗(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
127 nfv 1830 . . . . . . . . . 10 𝑗 𝑥:(0...𝑛)⟶𝐴
128 nfra1 2925 . . . . . . . . . 10 𝑗𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
129126, 127, 128nf3an 1819 . . . . . . . . 9 𝑗((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
130125, 129nfan 1816 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
131 nfra1 2925 . . . . . . . . . . 11 𝑡𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)
13219, 131nfan 1816 . . . . . . . . . 10 𝑡(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
133 nfcv 2751 . . . . . . . . . . 11 𝑡(0...𝑛)
134 nfra1 2925 . . . . . . . . . . . 12 𝑡𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1)
135 nfra1 2925 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛)
136 nfra1 2925 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)
137134, 135, 136nf3an 1819 . . . . . . . . . . 11 𝑡(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
138133, 137nfral 2929 . . . . . . . . . 10 𝑡𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
139132, 110, 138nf3an 1819 . . . . . . . . 9 𝑡((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
14014, 139nfan 1816 . . . . . . . 8 𝑡(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
141 eqid 2610 . . . . . . . 8 (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)}) = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)})
142 uniexg 6853 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ V)
14369, 142syl 17 . . . . . . . . . 10 (𝜑 𝐽 ∈ V)
14425, 143syl5eqel 2692 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑇 ∈ V)
14628adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐹:𝑇⟶ℝ)
147 stoweidlem60.16 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
148147r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
149148adantlr 747 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → 0 ≤ (𝐹𝑡))
150 simpr1r 1112 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
151150r19.21bi 2916 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
1523adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 ∈ ℝ+)
15394adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 < (1 / 3))
154 simpll 786 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝜑)
155 simplr2 1097 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑥:(0...𝑛)⟶𝐴)
156 simpr 476 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ (0...𝑛))
157 simp1 1054 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → 𝜑)
158 ffvelrn 6265 . . . . . . . . . . 11 ((𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
1591583adant1 1072 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
16082sselda 3568 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗) ∈ 𝐶)
16124, 25, 26, 160fcnre 38207 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗):𝑇⟶ℝ)
162157, 159, 161syl2anc 691 . . . . . . . . 9 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
163154, 155, 156, 162syl3anc 1318 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
164 simp1r3 1152 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
165 r19.26-3 3048 . . . . . . . . . . 11 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
166165simp1bi 1069 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1))
167 simpl 472 . . . . . . . . . . . 12 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → 0 ≤ ((𝑥𝑗)‘𝑡))
168167ralimi 2936 . . . . . . . . . . 11 (∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
169168ralimi 2936 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
170164, 166, 1693syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
171 simp2 1055 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑗 ∈ (0...𝑛))
172 simp3 1056 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑡𝑇)
173 rspa 2914 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
174173r19.21bi 2916 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
175170, 171, 172, 174syl21anc 1317 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
176 simpr 476 . . . . . . . . . . . 12 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ((𝑥𝑗)‘𝑡) ≤ 1)
177176ralimi 2936 . . . . . . . . . . 11 (∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
178177ralimi 2936 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
179164, 166, 1783syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
180 rspa 2914 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
181180r19.21bi 2916 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
182179, 171, 172, 181syl21anc 1317 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
183 simp1r3 1152 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
184165simp2bi 1070 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
185183, 184syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
186 simp2 1055 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (0...𝑛))
187 simp3 1056 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
188 rspa 2914 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
189188r19.21bi 2916 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
190185, 186, 187, 189syl21anc 1317 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
191 simp1r3 1152 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
192165simp3bi 1071 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
193191, 192syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
194 simp2 1055 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑗 ∈ (0...𝑛))
195 simp3 1056 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ (𝐵𝑗))
196 rspa 2914 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
197196r19.21bi 2916 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
198193, 194, 195, 197syl21anc 1317 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
19968, 130, 140, 77, 78, 141, 108, 145, 146, 149, 151, 152, 153, 163, 175, 182, 190, 198stoweidlem34 38927 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
200 nfmpt1 4675 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
201200nfeq2 2766 . . . . . . . . 9 𝑡 𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
202 fveq1 6102 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (𝑔𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))
203202breq1d 4593 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ↔ ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)))
204202breq2d 4595 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))
205203, 204anbi12d 743 . . . . . . . . . . 11 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)) ↔ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
206205anbi2d 736 . . . . . . . . . 10 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
207206rexbidv 3034 . . . . . . . . 9 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
208201, 207ralbid 2966 . . . . . . . 8 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
209208rspcev 3282 . . . . . . 7 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴 ∧ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
210124, 199, 209syl2anc 691 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
211210ex 449 . . . . 5 (𝜑 → (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
2122112eximdv 1835 . . . 4 (𝜑 → (∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
213106, 212mpd 15 . . 3 (𝜑 → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
214 idd 24 . . . 4 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
215214exlimdv 1848 . . 3 (𝜑 → (∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
216213, 215mpd 15 . 2 (𝜑 → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
217 idd 24 . . 3 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
218217exlimdv 1848 . 2 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
219216, 218mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wnf 1699  wcel 1977  wnfc 2738  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  3c3 10948  4c4 10949  +crp 11708  (,)cioo 12046  ...cfz 12197  Σcsu 14264  topGenctg 15921   Cn ccn 20838  Compccmp 20999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937
This theorem is referenced by:  stoweidlem61  38954
  Copyright terms: Public domain W3C validator