Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   GIF version

Theorem stoweidlem61 38954
 Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1 𝑡𝐹
stoweidlem61.2 𝑡𝜑
stoweidlem61.3 𝐾 = (topGen‘ran (,))
stoweidlem61.4 (𝜑𝐽 ∈ Comp)
stoweidlem61.5 𝑇 = 𝐽
stoweidlem61.6 (𝜑𝑇 ≠ ∅)
stoweidlem61.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem61.8 (𝜑𝐴𝐶)
stoweidlem61.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem61.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem61.13 (𝜑𝐹𝐶)
stoweidlem61.14 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem61.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem61.16 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem61 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑞,𝑟,𝑡,𝑥,𝐴   𝑓,𝐸,𝑔,𝑞,𝑟,𝑡,𝑥   𝑓,𝐹,𝑔,𝑞,𝑟,𝑥   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡,𝑥   𝜑,𝑓,𝑔,𝑞,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem61
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3 𝑡𝐹
2 stoweidlem61.2 . . 3 𝑡𝜑
3 stoweidlem61.3 . . 3 𝐾 = (topGen‘ran (,))
4 stoweidlem61.5 . . 3 𝑇 = 𝐽
5 stoweidlem61.7 . . 3 𝐶 = (𝐽 Cn 𝐾)
6 eqid 2610 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7 eqid 2610 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8 stoweidlem61.4 . . 3 (𝜑𝐽 ∈ Comp)
9 stoweidlem61.6 . . 3 (𝜑𝑇 ≠ ∅)
10 stoweidlem61.8 . . 3 (𝜑𝐴𝐶)
11 stoweidlem61.9 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem61.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
13 stoweidlem61.11 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
14 stoweidlem61.12 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
15 stoweidlem61.13 . . 3 (𝜑𝐹𝐶)
16 stoweidlem61.14 . . 3 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
17 stoweidlem61.15 . . 3 (𝜑𝐸 ∈ ℝ+)
18 stoweidlem61.16 . . 3 (𝜑𝐸 < (1 / 3))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 38953 . 2 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
20 nfv 1830 . . . . 5 𝑡 𝑔𝐴
212, 20nfan 1816 . . . 4 𝑡(𝜑𝑔𝐴)
2217ad2antrr 758 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ+)
233, 4, 5, 15fcnre 38207 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
2423fnvinran 38196 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2524adantlr 747 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2610sselda 3568 . . . . . . 7 ((𝜑𝑔𝐴) → 𝑔𝐶)
273, 4, 5, 26fcnre 38207 . . . . . 6 ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)
2827fnvinran 38196 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
29 simpll1 1093 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝐸 ∈ ℝ+)
30 simpll2 1094 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ∈ ℝ)
31 simpll3 1095 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) ∈ ℝ)
32 simplr 788 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝑗 ∈ ℝ)
33 simprll 798 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
34 simprlr 799 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
35 simprrr 801 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))
36 simprrl 800 . . . . . . . 8 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 38906 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
3837ex 449 . . . . . 6 (((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
3938rexlimdva 3013 . . . . 5 ((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4022, 25, 28, 39syl3anc 1318 . . . 4 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4121, 40ralimdaa 2941 . . 3 ((𝜑𝑔𝐴) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4241reximdva 3000 . 2 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4319, 42mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  4c4 10949  ℝ+crp 11708  (,)cioo 12046  ...cfz 12197  abscabs 13822  topGenctg 15921   Cn ccn 20838  Compccmp 20999 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937 This theorem is referenced by:  stoweidlem62  38955
 Copyright terms: Public domain W3C validator