MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Visualization version   GIF version

Theorem pf1ind 19540
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb 𝐵 = (Base‘𝑅)
pf1ind.cp + = (+g𝑅)
pf1ind.ct · = (.r𝑅)
pf1ind.cq 𝑄 = ran (eval1𝑅)
pf1ind.ad ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
pf1ind.mu ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
pf1ind.wa (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
pf1ind.wb (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
pf1ind.wc (𝑥 = 𝑓 → (𝜓𝜏))
pf1ind.wd (𝑥 = 𝑔 → (𝜓𝜂))
pf1ind.we (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))
pf1ind.wf (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))
pf1ind.wg (𝑥 = 𝐴 → (𝜓𝜌))
pf1ind.co ((𝜑𝑓𝐵) → 𝜒)
pf1ind.pr (𝜑𝜃)
pf1ind.a (𝜑𝐴𝑄)
Assertion
Ref Expression
pf1ind (𝜑𝜌)
Distinct variable groups:   𝑓,𝑔,𝑥, +   𝐵,𝑓,𝑔,𝑥   𝜂,𝑓,𝑥   𝜑,𝑓,𝑔   𝑥,𝐴   𝜒,𝑥   𝜓,𝑓,𝑔   𝑄,𝑓,𝑔   𝜌,𝑥   𝜎,𝑥   𝜏,𝑥   𝜃,𝑥   · ,𝑓,𝑔,𝑥   𝜁,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑓,𝑔)   𝜃(𝑓,𝑔)   𝜏(𝑓,𝑔)   𝜂(𝑔)   𝜁(𝑓,𝑔)   𝜎(𝑓,𝑔)   𝜌(𝑓,𝑔)   𝐴(𝑓,𝑔)   𝑄(𝑥)   𝑅(𝑥,𝑓,𝑔)

Proof of Theorem pf1ind
Dummy variables 𝑎 𝑏 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 5571 . . . . 5 ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (𝐴 ∘ ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
2 df1o2 7459 . . . . . . . . 9 1𝑜 = {∅}
3 pf1ind.cb . . . . . . . . . 10 𝐵 = (Base‘𝑅)
4 fvex 6113 . . . . . . . . . 10 (Base‘𝑅) ∈ V
53, 4eqeltri 2684 . . . . . . . . 9 𝐵 ∈ V
6 0ex 4718 . . . . . . . . 9 ∅ ∈ V
7 eqid 2610 . . . . . . . . 9 (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) = (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))
82, 5, 6, 7mapsncnv 7790 . . . . . . . 8 (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) = (𝑤𝐵 ↦ (1𝑜 × {𝑤}))
98coeq2i 5204 . . . . . . 7 ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) = ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))
102, 5, 6, 7mapsnf1o2 7791 . . . . . . . 8 (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵
11 f1ococnv2 6076 . . . . . . . 8 ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
1210, 11mp1i 13 . . . . . . 7 (𝜑 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) = ( I ↾ 𝐵))
139, 12syl5eqr 2658 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ( I ↾ 𝐵))
1413coeq2d 5206 . . . . 5 (𝜑 → (𝐴 ∘ ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) = (𝐴 ∘ ( I ↾ 𝐵)))
151, 14syl5eq 2656 . . . 4 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (𝐴 ∘ ( I ↾ 𝐵)))
16 pf1ind.a . . . . 5 (𝜑𝐴𝑄)
17 pf1ind.cq . . . . . 6 𝑄 = ran (eval1𝑅)
1817, 3pf1f 19535 . . . . 5 (𝐴𝑄𝐴:𝐵𝐵)
19 fcoi1 5991 . . . . 5 (𝐴:𝐵𝐵 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2016, 18, 193syl 18 . . . 4 (𝜑 → (𝐴 ∘ ( I ↾ 𝐵)) = 𝐴)
2115, 20eqtrd 2644 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = 𝐴)
22 pf1ind.cp . . . 4 + = (+g𝑅)
23 pf1ind.ct . . . 4 · = (.r𝑅)
24 eqid 2610 . . . . . 6 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
2524, 3evlval 19345 . . . . 5 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵)
2625rneqi 5273 . . . 4 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘𝐵)
27 an4 861 . . . . . 6 (((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})) ↔ ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})))
28 eqid 2610 . . . . . . . . . . . 12 ran (1𝑜 eval 𝑅) = ran (1𝑜 eval 𝑅)
2917, 3, 28mpfpf1 19536 . . . . . . . . . . 11 (𝑎 ∈ ran (1𝑜 eval 𝑅) → (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄)
3017, 3, 28mpfpf1 19536 . . . . . . . . . . 11 (𝑏 ∈ ran (1𝑜 eval 𝑅) → (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄)
31 vex 3176 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
32 pf1ind.wc . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑓 → (𝜓𝜏))
3331, 32elab 3319 . . . . . . . . . . . . . . . 16 (𝑓 ∈ {𝑥𝜓} ↔ 𝜏)
34 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝑓 ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
3533, 34syl5bbr 273 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝜏 ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
3635anbi1d 737 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((𝜏𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂)))
3736anbi1d 737 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((𝜏𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑)))
38 ovex 6577 . . . . . . . . . . . . . . 15 (𝑓𝑓 + 𝑔) ∈ V
39 pf1ind.we . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))
4038, 39elab 3319 . . . . . . . . . . . . . 14 ((𝑓𝑓 + 𝑔) ∈ {𝑥𝜓} ↔ 𝜁)
41 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝑓𝑓 + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔))
4241eleq1d 2672 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((𝑓𝑓 + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) ∈ {𝑥𝜓}))
4340, 42syl5bbr 273 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝜁 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) ∈ {𝑥𝜓}))
4437, 43imbi12d 333 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜁) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) ∈ {𝑥𝜓})))
45 vex 3176 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
46 pf1ind.wd . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑔 → (𝜓𝜂))
4745, 46elab 3319 . . . . . . . . . . . . . . . 16 (𝑔 ∈ {𝑥𝜓} ↔ 𝜂)
48 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝑔 ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
4947, 48syl5bbr 273 . . . . . . . . . . . . . . 15 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝜂 ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
5049anbi2d 736 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})))
5150anbi1d 737 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) ↔ (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑)))
52 oveq2 6557 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))))
5352eleq1d 2672 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
5451, 53imbi12d 333 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓})))
55 pf1ind.ad . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜁)
5655expcom 450 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜁))
5756an4s 865 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜁))
5857expimpd 627 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜁))
5944, 54, 58vtocl2ga 3247 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
6029, 30, 59syl2an 493 . . . . . . . . . 10 ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
6160expcomd 453 . . . . . . . . 9 ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓})))
6261impcom 445 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
6326, 3mpff 19354 . . . . . . . . . . . 12 (𝑎 ∈ ran (1𝑜 eval 𝑅) → 𝑎:(𝐵𝑚 1𝑜)⟶𝐵)
6463ad2antrl 760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → 𝑎:(𝐵𝑚 1𝑜)⟶𝐵)
65 ffn 5958 . . . . . . . . . . 11 (𝑎:(𝐵𝑚 1𝑜)⟶𝐵𝑎 Fn (𝐵𝑚 1𝑜))
6664, 65syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → 𝑎 Fn (𝐵𝑚 1𝑜))
6726, 3mpff 19354 . . . . . . . . . . . 12 (𝑏 ∈ ran (1𝑜 eval 𝑅) → 𝑏:(𝐵𝑚 1𝑜)⟶𝐵)
6867ad2antll 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → 𝑏:(𝐵𝑚 1𝑜)⟶𝐵)
69 ffn 5958 . . . . . . . . . . 11 (𝑏:(𝐵𝑚 1𝑜)⟶𝐵𝑏 Fn (𝐵𝑚 1𝑜))
7068, 69syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → 𝑏 Fn (𝐵𝑚 1𝑜))
71 eqid 2610 . . . . . . . . . . . 12 (𝑤𝐵 ↦ (1𝑜 × {𝑤})) = (𝑤𝐵 ↦ (1𝑜 × {𝑤}))
722, 5, 6, 71mapsnf1o3 7792 . . . . . . . . . . 11 (𝑤𝐵 ↦ (1𝑜 × {𝑤})):𝐵1-1-onto→(𝐵𝑚 1𝑜)
73 f1of 6050 . . . . . . . . . . 11 ((𝑤𝐵 ↦ (1𝑜 × {𝑤})):𝐵1-1-onto→(𝐵𝑚 1𝑜) → (𝑤𝐵 ↦ (1𝑜 × {𝑤})):𝐵⟶(𝐵𝑚 1𝑜))
7472, 73mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (𝑤𝐵 ↦ (1𝑜 × {𝑤})):𝐵⟶(𝐵𝑚 1𝑜))
75 ovex 6577 . . . . . . . . . . 11 (𝐵𝑚 1𝑜) ∈ V
7675a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (𝐵𝑚 1𝑜) ∈ V)
775a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → 𝐵 ∈ V)
78 inidm 3784 . . . . . . . . . 10 ((𝐵𝑚 1𝑜) ∩ (𝐵𝑚 1𝑜)) = (𝐵𝑚 1𝑜)
7966, 70, 74, 76, 76, 77, 78ofco 6815 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))))
8079eleq1d 2672 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 + (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
8162, 80sylibrd 248 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
8281expimpd 627 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
8327, 82syl5bi 231 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
8483imp 444 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
85 ovex 6577 . . . . . . . . . . . . . . 15 (𝑓𝑓 · 𝑔) ∈ V
86 pf1ind.wf . . . . . . . . . . . . . . 15 (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))
8785, 86elab 3319 . . . . . . . . . . . . . 14 ((𝑓𝑓 · 𝑔) ∈ {𝑥𝜓} ↔ 𝜎)
88 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝑓𝑓 · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔))
8988eleq1d 2672 . . . . . . . . . . . . . 14 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((𝑓𝑓 · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) ∈ {𝑥𝜓}))
9087, 89syl5bbr 273 . . . . . . . . . . . . 13 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (𝜎 ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) ∈ {𝑥𝜓}))
9137, 90imbi12d 333 . . . . . . . . . . . 12 (𝑓 = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((((𝜏𝜂) ∧ 𝜑) → 𝜎) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) ∈ {𝑥𝜓})))
92 oveq2 6557 . . . . . . . . . . . . . 14 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))))
9392eleq1d 2672 . . . . . . . . . . . . 13 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
9451, 93imbi12d 333 . . . . . . . . . . . 12 (𝑔 = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) → (((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ 𝜂) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · 𝑔) ∈ {𝑥𝜓}) ↔ ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓})))
95 pf1ind.mu . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂))) → 𝜎)
9695expcom 450 . . . . . . . . . . . . . 14 (((𝑓𝑄𝜏) ∧ (𝑔𝑄𝜂)) → (𝜑𝜎))
9796an4s 865 . . . . . . . . . . . . 13 (((𝑓𝑄𝑔𝑄) ∧ (𝜏𝜂)) → (𝜑𝜎))
9897expimpd 627 . . . . . . . . . . . 12 ((𝑓𝑄𝑔𝑄) → (((𝜏𝜂) ∧ 𝜑) → 𝜎))
9991, 94, 98vtocl2ga 3247 . . . . . . . . . . 11 (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄 ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ 𝑄) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
10029, 30, 99syl2an 493 . . . . . . . . . 10 ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) → ((((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ 𝜑) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
101100expcomd 453 . . . . . . . . 9 ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) → (𝜑 → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓})))
102101impcom 445 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
10366, 70, 74, 76, 76, 77, 78ofco 6815 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))))
104103eleq1d 2672 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∘𝑓 · (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤})))) ∈ {𝑥𝜓}))
105102, 104sylibrd 248 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅))) → (((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) → ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
106105expimpd 627 . . . . . 6 (𝜑 → (((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ 𝑏 ∈ ran (1𝑜 eval 𝑅)) ∧ ((𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
10727, 106syl5bi 231 . . . . 5 (𝜑 → (((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})) → ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
108107imp 444 . . . 4 ((𝜑 ∧ ((𝑎 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}) ∧ (𝑏 ∈ ran (1𝑜 eval 𝑅) ∧ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))) → ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
109 coeq1 5201 . . . . 5 (𝑦 = ((𝐵𝑚 1𝑜) × {𝑎}) → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (((𝐵𝑚 1𝑜) × {𝑎}) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
110109eleq1d 2672 . . . 4 (𝑦 = ((𝐵𝑚 1𝑜) × {𝑎}) → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ (((𝐵𝑚 1𝑜) × {𝑎}) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
111 coeq1 5201 . . . . 5 (𝑦 = (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
112111eleq1d 2672 . . . 4 (𝑦 = (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
113 coeq1 5201 . . . . 5 (𝑦 = 𝑎 → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
114113eleq1d 2672 . . . 4 (𝑦 = 𝑎 → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑎 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
115 coeq1 5201 . . . . 5 (𝑦 = 𝑏 → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
116115eleq1d 2672 . . . 4 (𝑦 = 𝑏 → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ (𝑏 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
117 coeq1 5201 . . . . 5 (𝑦 = (𝑎𝑓 + 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
118117eleq1d 2672 . . . 4 (𝑦 = (𝑎𝑓 + 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎𝑓 + 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
119 coeq1 5201 . . . . 5 (𝑦 = (𝑎𝑓 · 𝑏) → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
120119eleq1d 2672 . . . 4 (𝑦 = (𝑎𝑓 · 𝑏) → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑎𝑓 · 𝑏) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
121 coeq1 5201 . . . . 5 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) → (𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
122121eleq1d 2672 . . . 4 (𝑦 = (𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) → ((𝑦 ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
12317pf1rcl 19534 . . . . . . . . 9 (𝐴𝑄𝑅 ∈ CRing)
12416, 123syl 17 . . . . . . . 8 (𝜑𝑅 ∈ CRing)
125124adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝑅 ∈ CRing)
126 1on 7454 . . . . . . . . . . . 12 1𝑜 ∈ On
127 eqid 2610 . . . . . . . . . . . . 13 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
128127mplassa 19275 . . . . . . . . . . . 12 ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 mPoly 𝑅) ∈ AssAlg)
129126, 124, 128sylancr 694 . . . . . . . . . . 11 (𝜑 → (1𝑜 mPoly 𝑅) ∈ AssAlg)
130 eqid 2610 . . . . . . . . . . . . 13 (Poly1𝑅) = (Poly1𝑅)
131 eqid 2610 . . . . . . . . . . . . 13 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
132130, 131ply1ascl 19449 . . . . . . . . . . . 12 (algSc‘(Poly1𝑅)) = (algSc‘(1𝑜 mPoly 𝑅))
133 eqid 2610 . . . . . . . . . . . 12 (Scalar‘(1𝑜 mPoly 𝑅)) = (Scalar‘(1𝑜 mPoly 𝑅))
134132, 133asclrhm 19163 . . . . . . . . . . 11 ((1𝑜 mPoly 𝑅) ∈ AssAlg → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1𝑜 mPoly 𝑅)) RingHom (1𝑜 mPoly 𝑅)))
135129, 134syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘(Poly1𝑅)) ∈ ((Scalar‘(1𝑜 mPoly 𝑅)) RingHom (1𝑜 mPoly 𝑅)))
136126a1i 11 . . . . . . . . . . . 12 (𝜑 → 1𝑜 ∈ On)
137127, 136, 124mplsca 19266 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘(1𝑜 mPoly 𝑅)))
138137oveq1d 6564 . . . . . . . . . 10 (𝜑 → (𝑅 RingHom (1𝑜 mPoly 𝑅)) = ((Scalar‘(1𝑜 mPoly 𝑅)) RingHom (1𝑜 mPoly 𝑅)))
139135, 138eleqtrrd 2691 . . . . . . . . 9 (𝜑 → (algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1𝑜 mPoly 𝑅)))
140 eqid 2610 . . . . . . . . . 10 (Base‘(1𝑜 mPoly 𝑅)) = (Base‘(1𝑜 mPoly 𝑅))
1413, 140rhmf 18549 . . . . . . . . 9 ((algSc‘(Poly1𝑅)) ∈ (𝑅 RingHom (1𝑜 mPoly 𝑅)) → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1𝑜 mPoly 𝑅)))
142139, 141syl 17 . . . . . . . 8 (𝜑 → (algSc‘(Poly1𝑅)):𝐵⟶(Base‘(1𝑜 mPoly 𝑅)))
143142ffvelrnda 6267 . . . . . . 7 ((𝜑𝑎𝐵) → ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1𝑜 mPoly 𝑅)))
144 eqid 2610 . . . . . . . 8 (eval1𝑅) = (eval1𝑅)
145144, 24, 3, 127, 140evl1val 19514 . . . . . . 7 ((𝑅 ∈ CRing ∧ ((algSc‘(Poly1𝑅))‘𝑎) ∈ (Base‘(1𝑜 mPoly 𝑅))) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1𝑜 eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
146125, 143, 145syl2anc 691 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (((1𝑜 eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
147144, 130, 3, 131evl1sca 19519 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
148124, 147sylan 487 . . . . . 6 ((𝜑𝑎𝐵) → ((eval1𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = (𝐵 × {𝑎}))
1493ressid 15762 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
150125, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → (𝑅s 𝐵) = 𝑅)
151150oveq2d 6565 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (1𝑜 mPoly (𝑅s 𝐵)) = (1𝑜 mPoly 𝑅))
152151fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (algSc‘(1𝑜 mPoly (𝑅s 𝐵))) = (algSc‘(1𝑜 mPoly 𝑅)))
153152, 132syl6eqr 2662 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (algSc‘(1𝑜 mPoly (𝑅s 𝐵))) = (algSc‘(Poly1𝑅)))
154153fveq1d 6105 . . . . . . . . 9 ((𝜑𝑎𝐵) → ((algSc‘(1𝑜 mPoly (𝑅s 𝐵)))‘𝑎) = ((algSc‘(Poly1𝑅))‘𝑎))
155154fveq2d 6107 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1𝑜 eval 𝑅)‘((algSc‘(1𝑜 mPoly (𝑅s 𝐵)))‘𝑎)) = ((1𝑜 eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)))
156 eqid 2610 . . . . . . . . 9 (1𝑜 mPoly (𝑅s 𝐵)) = (1𝑜 mPoly (𝑅s 𝐵))
157 eqid 2610 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
158 eqid 2610 . . . . . . . . 9 (algSc‘(1𝑜 mPoly (𝑅s 𝐵))) = (algSc‘(1𝑜 mPoly (𝑅s 𝐵)))
159126a1i 11 . . . . . . . . 9 ((𝜑𝑎𝐵) → 1𝑜 ∈ On)
160 crngring 18381 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1613subrgid 18605 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
162124, 160, 1613syl 18 . . . . . . . . . 10 (𝜑𝐵 ∈ (SubRing‘𝑅))
163162adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝐵 ∈ (SubRing‘𝑅))
164 simpr 476 . . . . . . . . 9 ((𝜑𝑎𝐵) → 𝑎𝐵)
16525, 156, 157, 3, 158, 159, 125, 163, 164evlssca 19343 . . . . . . . 8 ((𝜑𝑎𝐵) → ((1𝑜 eval 𝑅)‘((algSc‘(1𝑜 mPoly (𝑅s 𝐵)))‘𝑎)) = ((𝐵𝑚 1𝑜) × {𝑎}))
166155, 165eqtr3d 2646 . . . . . . 7 ((𝜑𝑎𝐵) → ((1𝑜 eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) = ((𝐵𝑚 1𝑜) × {𝑎}))
167166coeq1d 5205 . . . . . 6 ((𝜑𝑎𝐵) → (((1𝑜 eval 𝑅)‘((algSc‘(Poly1𝑅))‘𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = (((𝐵𝑚 1𝑜) × {𝑎}) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
168146, 148, 1673eqtr3d 2652 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) = (((𝐵𝑚 1𝑜) × {𝑎}) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
169 pf1ind.co . . . . . . . 8 ((𝜑𝑓𝐵) → 𝜒)
170 snex 4835 . . . . . . . . . 10 {𝑓} ∈ V
1715, 170xpex 6860 . . . . . . . . 9 (𝐵 × {𝑓}) ∈ V
172 pf1ind.wa . . . . . . . . 9 (𝑥 = (𝐵 × {𝑓}) → (𝜓𝜒))
173171, 172elab 3319 . . . . . . . 8 ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ 𝜒)
174169, 173sylibr 223 . . . . . . 7 ((𝜑𝑓𝐵) → (𝐵 × {𝑓}) ∈ {𝑥𝜓})
175174ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓})
176 sneq 4135 . . . . . . . . 9 (𝑓 = 𝑎 → {𝑓} = {𝑎})
177176xpeq2d 5063 . . . . . . . 8 (𝑓 = 𝑎 → (𝐵 × {𝑓}) = (𝐵 × {𝑎}))
178177eleq1d 2672 . . . . . . 7 (𝑓 = 𝑎 → ((𝐵 × {𝑓}) ∈ {𝑥𝜓} ↔ (𝐵 × {𝑎}) ∈ {𝑥𝜓}))
179178rspccva 3281 . . . . . 6 ((∀𝑓𝐵 (𝐵 × {𝑓}) ∈ {𝑥𝜓} ∧ 𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
180175, 179sylan 487 . . . . 5 ((𝜑𝑎𝐵) → (𝐵 × {𝑎}) ∈ {𝑥𝜓})
181168, 180eqeltrrd 2689 . . . 4 ((𝜑𝑎𝐵) → (((𝐵𝑚 1𝑜) × {𝑎}) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
182 pf1ind.pr . . . . . . . 8 (𝜑𝜃)
183 resiexg 6994 . . . . . . . . . 10 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
1845, 183ax-mp 5 . . . . . . . . 9 ( I ↾ 𝐵) ∈ V
185 pf1ind.wb . . . . . . . . 9 (𝑥 = ( I ↾ 𝐵) → (𝜓𝜃))
186184, 185elab 3319 . . . . . . . 8 (( I ↾ 𝐵) ∈ {𝑥𝜓} ↔ 𝜃)
187182, 186sylibr 223 . . . . . . 7 (𝜑 → ( I ↾ 𝐵) ∈ {𝑥𝜓})
18813, 187eqeltrd 2688 . . . . . 6 (𝜑 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
189 el1o 7466 . . . . . . . . . 10 (𝑎 ∈ 1𝑜𝑎 = ∅)
190 fveq2 6103 . . . . . . . . . 10 (𝑎 = ∅ → (𝑏𝑎) = (𝑏‘∅))
191189, 190sylbi 206 . . . . . . . . 9 (𝑎 ∈ 1𝑜 → (𝑏𝑎) = (𝑏‘∅))
192191mpteq2dv 4673 . . . . . . . 8 (𝑎 ∈ 1𝑜 → (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) = (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)))
193192coeq1d 5205 . . . . . . 7 (𝑎 ∈ 1𝑜 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) = ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))))
194193eleq1d 2672 . . . . . 6 (𝑎 ∈ 1𝑜 → (((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓} ↔ ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
195188, 194syl5ibrcom 236 . . . . 5 (𝜑 → (𝑎 ∈ 1𝑜 → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓}))
196195imp 444 . . . 4 ((𝜑𝑎 ∈ 1𝑜) → ((𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏𝑎)) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
19717, 3, 28pf1mpf 19537 . . . . 5 (𝐴𝑄 → (𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∈ ran (1𝑜 eval 𝑅))
19816, 197syl 17 . . . 4 (𝜑 → (𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∈ ran (1𝑜 eval 𝑅))
1993, 22, 23, 26, 84, 108, 110, 112, 114, 116, 118, 120, 122, 181, 196, 198mpfind 19357 . . 3 (𝜑 → ((𝐴 ∘ (𝑏 ∈ (𝐵𝑚 1𝑜) ↦ (𝑏‘∅))) ∘ (𝑤𝐵 ↦ (1𝑜 × {𝑤}))) ∈ {𝑥𝜓})
20021, 199eqeltrrd 2689 . 2 (𝜑𝐴 ∈ {𝑥𝜓})
201 pf1ind.wg . . . 4 (𝑥 = 𝐴 → (𝜓𝜌))
202201elabg 3320 . . 3 (𝐴𝑄 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
20316, 202syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜌))
204200, 203mpbid 221 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  c0 3874  {csn 4125  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  ccom 5042  Oncon0 5640   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑓 cof 6793  1𝑜c1o 7440  𝑚 cmap 7744  Basecbs 15695  s cress 15696  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  SubRingcsubrg 18599  AssAlgcasa 19130  algSccascl 19132   mPoly cmpl 19174   evalSub ces 19325   eval cevl 19326  Poly1cpl1 19368  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-assa 19133  df-asp 19134  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-evls 19327  df-evl 19328  df-psr1 19371  df-ply1 19373  df-evl1 19502
This theorem is referenced by:  pl1cn  29329
  Copyright terms: Public domain W3C validator