MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 19534
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3879 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2610 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2610 . . . . . 6 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
5 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 19513 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
76rneqi 5273 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
8 rnco2 5559 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
92, 7, 83eqtri 2636 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
10 inss2 3796 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅)
11 neq0 3889 . . . . . . 7 (¬ ran (1𝑜 eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅))
124, 5evlval 19345 . . . . . . . . . . 11 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5273 . . . . . . . . . 10 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 19339 . . . . . . . . 9 (𝑥 ∈ ran (1𝑜 eval 𝑅) → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1067 . . . . . . . 8 (𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1845 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 206 . . . . . 6 (¬ ran (1𝑜 eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 143 . . . . 5 𝑅 ∈ CRing → ran (1𝑜 eval 𝑅) = ∅)
19 sseq0 3927 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅) ∧ ran (1𝑜 eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2010, 18, 19sylancr 694 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
21 imadisj 5403 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2220, 21sylibr 223 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅)
239, 22syl5eq 2656 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 141 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cin 3539  wss 3540  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑚 cmap 7744  Basecbs 15695  CRingccrg 18371  SubRingcsubrg 18599   evalSub ces 19325   eval cevl 19326  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-evls 19327  df-evl 19328  df-evl1 19502
This theorem is referenced by:  pf1f  19535  pf1mpf  19537  pf1addcl  19538  pf1mulcl  19539  pf1ind  19540
  Copyright terms: Public domain W3C validator