MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 19536
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1𝑜 eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1𝑜 eval 𝑅)
2 eqid 2610 . . . . . . 7 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 19345 . . . . . 6 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵)
54rneqi 5273 . . . . 5 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘𝐵)
61, 5eqtri 2632 . . . 4 𝐸 = ran ((1𝑜 evalSub 𝑅)‘𝐵)
76mpfrcl 19339 . . 3 (𝐹𝐸 → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1067 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1syl6eleq 2698 . . 3 (𝐹𝐸𝐹 ∈ ran (1𝑜 eval 𝑅))
11 1on 7454 . . . . 5 1𝑜 ∈ On
12 eqid 2610 . . . . . 6 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
13 eqid 2610 . . . . . 6 (𝑅s (𝐵𝑚 1𝑜)) = (𝑅s (𝐵𝑚 1𝑜))
142, 3, 12, 13evlrhm 19346 . . . . 5 ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
1511, 8, 14sylancr 694 . . . 4 (𝐹𝐸 → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
16 eqid 2610 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2610 . . . . . 6 (PwSer1𝑅) = (PwSer1𝑅)
18 eqid 2610 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1916, 17, 18ply1bas 19386 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1𝑜 mPoly 𝑅))
20 eqid 2610 . . . . 5 (Base‘(𝑅s (𝐵𝑚 1𝑜))) = (Base‘(𝑅s (𝐵𝑚 1𝑜)))
2119, 20rhmf 18549 . . . 4 ((1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
22 ffn 5958 . . . 4 ((1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
23 fvelrnb 6153 . . . 4 ((1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹))
2415, 21, 22, 234syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹))
2510, 24mpbid 221 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹)
26 eqid 2610 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2726, 2, 3, 12, 19evl1val 19514 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
28 eqid 2610 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2926, 16, 28, 3evl1rhm 19517 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
30 eqid 2610 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3118, 30rhmf 18549 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
32 ffn 5958 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3329, 31, 323syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
34 fnfvelrn 6264 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3533, 34sylan 487 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
36 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3735, 36syl6eleqr 2699 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3827, 37eqeltrrd 2689 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
39 coeq1 5201 . . . . 5 (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
4039eleq1d 2672 . . . 4 (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → ((((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
4138, 40syl5ibcom 234 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
4241rexlimdva 3013 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
438, 25, 42sylc 63 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  {csn 4125  cmpt 4643   × cxp 5036  ran crn 5039  ccom 5042  Oncon0 5640   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑚 cmap 7744  Basecbs 15695  s cpws 15930  CRingccrg 18371   RingHom crh 18535  SubRingcsubrg 18599   mPoly cmpl 19174   evalSub ces 19325   eval cevl 19326  PwSer1cps1 19366  Poly1cpl1 19368  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-assa 19133  df-asp 19134  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-evls 19327  df-evl 19328  df-psr1 19371  df-ply1 19373  df-evl1 19502
This theorem is referenced by:  pf1ind  19540
  Copyright terms: Public domain W3C validator