MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Visualization version   GIF version

Theorem pf1mpf 19537
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1𝑜 eval 𝑅)
Assertion
Ref Expression
pf1mpf (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑄   𝑥,𝑅
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem pf1mpf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3 𝑄 = ran (eval1𝑅)
21pf1rcl 19534 . 2 (𝐹𝑄𝑅 ∈ CRing)
3 id 22 . . . 4 (𝐹𝑄𝐹𝑄)
43, 1syl6eleq 2698 . . 3 (𝐹𝑄𝐹 ∈ ran (eval1𝑅))
5 eqid 2610 . . . . . 6 (eval1𝑅) = (eval1𝑅)
6 eqid 2610 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
7 eqid 2610 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
8 pf1f.b . . . . . 6 𝐵 = (Base‘𝑅)
95, 6, 7, 8evl1rhm 19517 . . . . 5 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
102, 9syl 17 . . . 4 (𝐹𝑄 → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
11 eqid 2610 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2610 . . . . 5 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
1311, 12rhmf 18549 . . . 4 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
14 ffn 5958 . . . 4 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
15 fvelrnb 6153 . . . 4 ((eval1𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
1610, 13, 14, 154syl 19 . . 3 (𝐹𝑄 → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
174, 16mpbid 221 . 2 (𝐹𝑄 → ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹)
18 eqid 2610 . . . . . . . 8 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
19 eqid 2610 . . . . . . . 8 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
20 eqid 2610 . . . . . . . . 9 (PwSer1𝑅) = (PwSer1𝑅)
216, 20, 11ply1bas 19386 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(1𝑜 mPoly 𝑅))
225, 18, 8, 19, 21evl1val 19514 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑦) = (((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))))
2322coeq1d 5205 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
24 coass 5571 . . . . . . 7 ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
25 df1o2 7459 . . . . . . . . . . 11 1𝑜 = {∅}
26 fvex 6113 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
278, 26eqeltri 2684 . . . . . . . . . . 11 𝐵 ∈ V
28 0ex 4718 . . . . . . . . . . 11 ∅ ∈ V
29 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))
3025, 27, 28, 29mapsncnv 7790 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑧𝐵 ↦ (1𝑜 × {𝑧}))
3130coeq1i 5203 . . . . . . . . 9 ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)))
3225, 27, 28, 29mapsnf1o2 7791 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵
33 f1ococnv1 6078 . . . . . . . . . 10 ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵 → ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3432, 33mp1i 13 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3531, 34syl5eqr 2658 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3635coeq2d 5206 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))))
3724, 36syl5eq 2656 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))))
38 eqid 2610 . . . . . . . 8 (𝑅s (𝐵𝑚 1𝑜)) = (𝑅s (𝐵𝑚 1𝑜))
39 eqid 2610 . . . . . . . 8 (Base‘(𝑅s (𝐵𝑚 1𝑜))) = (Base‘(𝑅s (𝐵𝑚 1𝑜)))
40 simpl 472 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → 𝑅 ∈ CRing)
41 ovex 6577 . . . . . . . . 9 (𝐵𝑚 1𝑜) ∈ V
4241a1i 11 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (𝐵𝑚 1𝑜) ∈ V)
43 1on 7454 . . . . . . . . . . 11 1𝑜 ∈ On
4418, 8, 19, 38evlrhm 19346 . . . . . . . . . . 11 ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
4543, 44mpan 702 . . . . . . . . . 10 (𝑅 ∈ CRing → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
4621, 39rhmf 18549 . . . . . . . . . 10 ((1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
4745, 46syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
4847ffvelrnda 6267 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ (Base‘(𝑅s (𝐵𝑚 1𝑜))))
4938, 8, 39, 40, 42, 48pwselbas 15972 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦):(𝐵𝑚 1𝑜)⟶𝐵)
50 fcoi1 5991 . . . . . . 7 (((1𝑜 eval 𝑅)‘𝑦):(𝐵𝑚 1𝑜)⟶𝐵 → (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))) = ((1𝑜 eval 𝑅)‘𝑦))
5149, 50syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))) = ((1𝑜 eval 𝑅)‘𝑦))
5223, 37, 513eqtrd 2648 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((1𝑜 eval 𝑅)‘𝑦))
53 ffn 5958 . . . . . . . 8 ((1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
5447, 53syl 17 . . . . . . 7 (𝑅 ∈ CRing → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
55 fnfvelrn 6264 . . . . . . 7 (((1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ ran (1𝑜 eval 𝑅))
5654, 55sylan 487 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ ran (1𝑜 eval 𝑅))
57 mpfpf1.q . . . . . 6 𝐸 = ran (1𝑜 eval 𝑅)
5856, 57syl6eleqr 2699 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ 𝐸)
5952, 58eqeltrd 2688 . . . 4 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
60 coeq1 5201 . . . . 5 (((eval1𝑅)‘𝑦) = 𝐹 → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
6160eleq1d 2672 . . . 4 (((eval1𝑅)‘𝑦) = 𝐹 → ((((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸 ↔ (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
6259, 61syl5ibcom 234 . . 3 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
6362rexlimdva 3013 . 2 (𝑅 ∈ CRing → (∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
642, 17, 63sylc 63 1 (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  c0 3874  {csn 4125  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  ccom 5042  Oncon0 5640   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑚 cmap 7744  Basecbs 15695  s cpws 15930  CRingccrg 18371   RingHom crh 18535   mPoly cmpl 19174   eval cevl 19326  PwSer1cps1 19366  Poly1cpl1 19368  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-assa 19133  df-asp 19134  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-evls 19327  df-evl 19328  df-psr1 19371  df-ply1 19373  df-evl1 19502
This theorem is referenced by:  pf1ind  19540
  Copyright terms: Public domain W3C validator