MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1ind Structured version   Unicode version

Theorem pf1ind 18159
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1ind.cb  |-  B  =  ( Base `  R
)
pf1ind.cp  |-  .+  =  ( +g  `  R )
pf1ind.ct  |-  .x.  =  ( .r `  R )
pf1ind.cq  |-  Q  =  ran  (eval1 `  R )
pf1ind.ad  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  ze )
pf1ind.mu  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  si )
pf1ind.wa  |-  ( x  =  ( B  X.  { f } )  ->  ( ps  <->  ch )
)
pf1ind.wb  |-  ( x  =  (  _I  |`  B )  ->  ( ps  <->  th )
)
pf1ind.wc  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
pf1ind.wd  |-  ( x  =  g  ->  ( ps 
<->  et ) )
pf1ind.we  |-  ( x  =  ( f  oF  .+  g )  ->  ( ps  <->  ze )
)
pf1ind.wf  |-  ( x  =  ( f  oF  .x.  g )  ->  ( ps  <->  si )
)
pf1ind.wg  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
pf1ind.co  |-  ( (
ph  /\  f  e.  B )  ->  ch )
pf1ind.pr  |-  ( ph  ->  th )
pf1ind.a  |-  ( ph  ->  A  e.  Q )
Assertion
Ref Expression
pf1ind  |-  ( ph  ->  rh )
Distinct variable groups:    f, g, x,  .+    B, f, g, x    et, f, x    ph, f,
g    x, A    ch, x    ps, f, g    Q, f, g    rh, x    si, x    ta, x    th, x    .x. , f, g, x    ze, x
Allowed substitution hints:    ph( x)    ps( x)    ch( f, g)    th( f,
g)    ta( f, g)    et( g)    ze( f, g)    si( f,
g)    rh( f, g)    A( f, g)    Q( x)    R( x, f, g)

Proof of Theorem pf1ind
Dummy variables  a 
b  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 5524 . . . . 5  |-  ( ( A  o.  ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  =  ( A  o.  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
2 df1o2 7139 . . . . . . . . 9  |-  1o  =  { (/) }
3 pf1ind.cb . . . . . . . . . 10  |-  B  =  ( Base `  R
)
4 fvex 5874 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
53, 4eqeltri 2551 . . . . . . . . 9  |-  B  e. 
_V
6 0ex 4577 . . . . . . . . 9  |-  (/)  e.  _V
7 eqid 2467 . . . . . . . . 9  |-  ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) )  =  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) )
82, 5, 6, 7mapsncnv 7462 . . . . . . . 8  |-  `' ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  =  ( w  e.  B  |->  ( 1o  X.  { w } ) )
98coeq2i 5161 . . . . . . 7  |-  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  `' ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) )  =  ( ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )
102, 5, 6, 7mapsnf1o2 7463 . . . . . . . 8  |-  ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) : ( B  ^m  1o )
-1-1-onto-> B
11 f1ococnv2 5840 . . . . . . . 8  |-  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) ) : ( B  ^m  1o ) -1-1-onto-> B  ->  ( (
b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  `' ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) )  =  (  _I  |`  B ) )
1210, 11mp1i 12 . . . . . . 7  |-  ( ph  ->  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  `' ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  =  (  _I  |`  B ) )
139, 12syl5eqr 2522 . . . . . 6  |-  ( ph  ->  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  =  (  _I  |`  B ) )
1413coeq2d 5163 . . . . 5  |-  ( ph  ->  ( A  o.  (
( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  =  ( A  o.  (  _I  |`  B ) ) )
151, 14syl5eq 2520 . . . 4  |-  ( ph  ->  ( ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  =  ( A  o.  (  _I  |`  B ) ) )
16 pf1ind.a . . . . 5  |-  ( ph  ->  A  e.  Q )
17 pf1ind.cq . . . . . 6  |-  Q  =  ran  (eval1 `  R )
1817, 3pf1f 18154 . . . . 5  |-  ( A  e.  Q  ->  A : B --> B )
19 fcoi1 5757 . . . . 5  |-  ( A : B --> B  -> 
( A  o.  (  _I  |`  B ) )  =  A )
2016, 18, 193syl 20 . . . 4  |-  ( ph  ->  ( A  o.  (  _I  |`  B ) )  =  A )
2115, 20eqtrd 2508 . . 3  |-  ( ph  ->  ( ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  =  A )
22 pf1ind.cp . . . 4  |-  .+  =  ( +g  `  R )
23 pf1ind.ct . . . 4  |-  .x.  =  ( .r `  R )
24 eqid 2467 . . . . . 6  |-  ( 1o eval  R )  =  ( 1o eval  R )
2524, 3evlval 17961 . . . . 5  |-  ( 1o eval  R )  =  ( ( 1o evalSub  R ) `  B )
2625rneqi 5227 . . . 4  |-  ran  ( 1o eval  R )  =  ran  ( ( 1o evalSub  R ) `
 B )
27 an4 822 . . . . . 6  |-  ( ( ( a  e.  ran  ( 1o eval  R )  /\  ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )  /\  ( b  e.  ran  ( 1o eval  R )  /\  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } ) )  <-> 
( ( a  e. 
ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) )  /\  ( ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps }  /\  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) ) )
28 eqid 2467 . . . . . . . . . . . 12  |-  ran  ( 1o eval  R )  =  ran  ( 1o eval  R )
2917, 3, 28mpfpf1 18155 . . . . . . . . . . 11  |-  ( a  e.  ran  ( 1o eval  R )  ->  (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e.  Q )
3017, 3, 28mpfpf1 18155 . . . . . . . . . . 11  |-  ( b  e.  ran  ( 1o eval  R )  ->  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e.  Q )
31 vex 3116 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
32 pf1ind.wc . . . . . . . . . . . . . . . . 17  |-  ( x  =  f  ->  ( ps 
<->  ta ) )
3331, 32elab 3250 . . . . . . . . . . . . . . . 16  |-  ( f  e.  { x  |  ps }  <->  ta )
34 eleq1 2539 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( f  e.  { x  |  ps } 
<->  ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } ) )
3533, 34syl5bbr 259 . . . . . . . . . . . . . . 15  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( ta  <->  ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )
3635anbi1d 704 . . . . . . . . . . . . . 14  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( ( ta  /\  et )  <->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps }  /\  et ) ) )
3736anbi1d 704 . . . . . . . . . . . . 13  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ta  /\  et )  /\  ph )  <->  ( (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  /\  et )  /\  ph ) ) )
38 ovex 6307 . . . . . . . . . . . . . . 15  |-  ( f  oF  .+  g
)  e.  _V
39 pf1ind.we . . . . . . . . . . . . . . 15  |-  ( x  =  ( f  oF  .+  g )  ->  ( ps  <->  ze )
)
4038, 39elab 3250 . . . . . . . . . . . . . 14  |-  ( ( f  oF  .+  g )  e.  {
x  |  ps }  <->  ze )
41 oveq1 6289 . . . . . . . . . . . . . . 15  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( f  oF  .+  g )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  g ) )
4241eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
f  oF  .+  g )  e.  {
x  |  ps }  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  g
)  e.  { x  |  ps } ) )
4340, 42syl5bbr 259 . . . . . . . . . . . . 13  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( ze  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  g
)  e.  { x  |  ps } ) )
4437, 43imbi12d 320 . . . . . . . . . . . 12  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ( ta  /\  et )  /\  ph )  ->  ze )  <->  ( (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  et )  /\  ph )  -> 
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  oF  .+  g )  e.  {
x  |  ps }
) ) )
45 vex 3116 . . . . . . . . . . . . . . . . 17  |-  g  e. 
_V
46 pf1ind.wd . . . . . . . . . . . . . . . . 17  |-  ( x  =  g  ->  ( ps 
<->  et ) )
4745, 46elab 3250 . . . . . . . . . . . . . . . 16  |-  ( g  e.  { x  |  ps }  <->  et )
48 eleq1 2539 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( g  e.  { x  |  ps } 
<->  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } ) )
4947, 48syl5bbr 259 . . . . . . . . . . . . . . 15  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( et  <->  ( b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )
5049anbi2d 703 . . . . . . . . . . . . . 14  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  /\  et ) 
<->  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) ) )
5150anbi1d 704 . . . . . . . . . . . . 13  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  et )  /\  ph )  <->  ( (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  ph ) ) )
52 oveq2 6290 . . . . . . . . . . . . . 14  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .+  g )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) ) ) )
5352eleq1d 2536 . . . . . . . . . . . . 13  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  g
)  e.  { x  |  ps }  <->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
5451, 53imbi12d 320 . . . . . . . . . . . 12  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  et )  /\  ph )  ->  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  g )  e. 
{ x  |  ps } )  <->  ( (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  ph )  ->  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) ) )  e.  {
x  |  ps }
) ) )
55 pf1ind.ad . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  ze )
5655expcom 435 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) )  ->  ( ph  ->  ze ) )
5756an4s 824 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  Q  /\  g  e.  Q
)  /\  ( ta  /\  et ) )  -> 
( ph  ->  ze )
)
5857expimpd 603 . . . . . . . . . . . 12  |-  ( ( f  e.  Q  /\  g  e.  Q )  ->  ( ( ( ta 
/\  et )  /\  ph )  ->  ze )
)
5944, 54, 58vtocl2ga 3179 . . . . . . . . . . 11  |-  ( ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  Q  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e.  Q )  ->  (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )  /\  ph )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
6029, 30, 59syl2an 477 . . . . . . . . . 10  |-  ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  ->  (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )  /\  ph )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
6160expcomd 438 . . . . . . . . 9  |-  ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  ->  ( ph  ->  ( ( ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps }  /\  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } )  -> 
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  oF  .+  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e.  { x  |  ps } ) ) )
6261impcom 430 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  ->  (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )  e.  { x  |  ps } ) )
6326, 3mpff 17970 . . . . . . . . . . . 12  |-  ( a  e.  ran  ( 1o eval  R )  ->  a : ( B  ^m  1o ) --> B )
6463ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  a : ( B  ^m  1o ) --> B )
65 ffn 5729 . . . . . . . . . . 11  |-  ( a : ( B  ^m  1o ) --> B  ->  a  Fn  ( B  ^m  1o ) )
6664, 65syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  a  Fn  ( B  ^m  1o ) )
6726, 3mpff 17970 . . . . . . . . . . . 12  |-  ( b  e.  ran  ( 1o eval  R )  ->  b : ( B  ^m  1o ) --> B )
6867ad2antll 728 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  b : ( B  ^m  1o ) --> B )
69 ffn 5729 . . . . . . . . . . 11  |-  ( b : ( B  ^m  1o ) --> B  ->  b  Fn  ( B  ^m  1o ) )
7068, 69syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  b  Fn  ( B  ^m  1o ) )
71 eqid 2467 . . . . . . . . . . . 12  |-  ( w  e.  B  |->  ( 1o 
X.  { w }
) )  =  ( w  e.  B  |->  ( 1o  X.  { w } ) )
722, 5, 6, 71mapsnf1o3 7464 . . . . . . . . . . 11  |-  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) : B -1-1-onto-> ( B  ^m  1o )
73 f1of 5814 . . . . . . . . . . 11  |-  ( ( w  e.  B  |->  ( 1o  X.  { w } ) ) : B -1-1-onto-> ( B  ^m  1o )  ->  ( w  e.  B  |->  ( 1o  X.  { w } ) ) : B --> ( B  ^m  1o ) )
7472, 73mp1i 12 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
w  e.  B  |->  ( 1o  X.  { w } ) ) : B --> ( B  ^m  1o ) )
75 ovex 6307 . . . . . . . . . . 11  |-  ( B  ^m  1o )  e. 
_V
7675a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  ( B  ^m  1o )  e. 
_V )
775a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  B  e.  _V )
78 inidm 3707 . . . . . . . . . 10  |-  ( ( B  ^m  1o )  i^i  ( B  ^m  1o ) )  =  ( B  ^m  1o )
7966, 70, 74, 76, 76, 77, 78ofco 6542 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .+  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) ) )
8079eleq1d 2536 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .+  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )  e.  { x  |  ps } ) )
8162, 80sylibrd 234 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  ->  (
( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
8281expimpd 603 . . . . . 6  |-  ( ph  ->  ( ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  /\  (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )  -> 
( ( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }
) )
8327, 82syl5bi 217 . . . . 5  |-  ( ph  ->  ( ( ( a  e.  ran  ( 1o eval  R )  /\  (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  (
b  e.  ran  ( 1o eval  R )  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )  -> 
( ( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }
) )
8483imp 429 . . . 4  |-  ( (
ph  /\  ( (
a  e.  ran  ( 1o eval  R )  /\  (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  (
b  e.  ran  ( 1o eval  R )  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) ) )  ->  ( ( a  oF  .+  b
)  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )
85 ovex 6307 . . . . . . . . . . . . . . 15  |-  ( f  oF  .x.  g
)  e.  _V
86 pf1ind.wf . . . . . . . . . . . . . . 15  |-  ( x  =  ( f  oF  .x.  g )  ->  ( ps  <->  si )
)
8785, 86elab 3250 . . . . . . . . . . . . . 14  |-  ( ( f  oF  .x.  g )  e.  {
x  |  ps }  <->  si )
88 oveq1 6289 . . . . . . . . . . . . . . 15  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( f  oF  .x.  g )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  g ) )
8988eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
f  oF  .x.  g )  e.  {
x  |  ps }  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  g
)  e.  { x  |  ps } ) )
9087, 89syl5bbr 259 . . . . . . . . . . . . 13  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( si  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  g
)  e.  { x  |  ps } ) )
9137, 90imbi12d 320 . . . . . . . . . . . 12  |-  ( f  =  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ( ta  /\  et )  /\  ph )  ->  si )  <->  ( (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  et )  /\  ph )  -> 
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  oF  .x.  g )  e.  {
x  |  ps }
) ) )
92 oveq2 6290 . . . . . . . . . . . . . 14  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .x.  g )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) ) ) )
9392eleq1d 2536 . . . . . . . . . . . . 13  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  g
)  e.  { x  |  ps }  <->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
9451, 93imbi12d 320 . . . . . . . . . . . 12  |-  ( g  =  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  ->  ( (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  et )  /\  ph )  ->  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  g )  e. 
{ x  |  ps } )  <->  ( (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  ph )  ->  ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) ) )  e.  {
x  |  ps }
) ) )
95 pf1ind.mu . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) ) )  ->  si )
9695expcom 435 . . . . . . . . . . . . . 14  |-  ( ( ( f  e.  Q  /\  ta )  /\  (
g  e.  Q  /\  et ) )  ->  ( ph  ->  si ) )
9796an4s 824 . . . . . . . . . . . . 13  |-  ( ( ( f  e.  Q  /\  g  e.  Q
)  /\  ( ta  /\  et ) )  -> 
( ph  ->  si )
)
9897expimpd 603 . . . . . . . . . . . 12  |-  ( ( f  e.  Q  /\  g  e.  Q )  ->  ( ( ( ta 
/\  et )  /\  ph )  ->  si )
)
9991, 94, 98vtocl2ga 3179 . . . . . . . . . . 11  |-  ( ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  Q  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e.  Q )  ->  (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )  /\  ph )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
10029, 30, 99syl2an 477 . . . . . . . . . 10  |-  ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  ->  (
( ( ( a  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  /\  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )  /\  ph )  ->  ( (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e. 
{ x  |  ps } ) )
101100expcomd 438 . . . . . . . . 9  |-  ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  ->  ( ph  ->  ( ( ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps }  /\  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } )  -> 
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  oF  .x.  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )  e.  { x  |  ps } ) ) )
102101impcom 430 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  ->  (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )  e.  { x  |  ps } ) )
10366, 70, 74, 76, 76, 77, 78ofco 6542 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  oF  .x.  ( b  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) ) )
104103eleq1d 2536 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  <->  ( ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  oF  .x.  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )  e.  { x  |  ps } ) )
105102, 104sylibrd 234 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ran  ( 1o eval  R
)  /\  b  e.  ran  ( 1o eval  R ) ) )  ->  (
( ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  ->  (
( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
106105expimpd 603 . . . . . 6  |-  ( ph  ->  ( ( ( a  e.  ran  ( 1o eval  R )  /\  b  e.  ran  ( 1o eval  R
) )  /\  (
( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )  -> 
( ( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }
) )
10727, 106syl5bi 217 . . . . 5  |-  ( ph  ->  ( ( ( a  e.  ran  ( 1o eval  R )  /\  (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  (
b  e.  ran  ( 1o eval  R )  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )  -> 
( ( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }
) )
108107imp 429 . . . 4  |-  ( (
ph  /\  ( (
a  e.  ran  ( 1o eval  R )  /\  (
a  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )  /\  (
b  e.  ran  ( 1o eval  R )  /\  (
b  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) ) )  ->  ( ( a  oF  .x.  b
)  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )
109 coeq1 5158 . . . . 5  |-  ( y  =  ( ( B  ^m  1o )  X. 
{ a } )  ->  ( y  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( ( B  ^m  1o )  X.  { a } )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )
110109eleq1d 2536 . . . 4  |-  ( y  =  ( ( B  ^m  1o )  X. 
{ a } )  ->  ( ( y  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  <->  ( ( ( B  ^m  1o )  X.  { a } )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } ) )
111 coeq1 5158 . . . . 5  |-  ( y  =  ( b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  -> 
( y  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  =  ( ( b  e.  ( B  ^m  1o )  |->  ( b `
 a ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
112111eleq1d 2536 . . . 4  |-  ( y  =  ( b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  -> 
( ( y  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  <->  ( (
b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )
113 coeq1 5158 . . . . 5  |-  ( y  =  a  ->  (
y  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  =  ( a  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
114113eleq1d 2536 . . . 4  |-  ( y  =  a  ->  (
( y  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  <->  ( a  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
115 coeq1 5158 . . . . 5  |-  ( y  =  b  ->  (
y  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  =  ( b  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
116115eleq1d 2536 . . . 4  |-  ( y  =  b  ->  (
( y  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps }  <->  ( b  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
117 coeq1 5158 . . . . 5  |-  ( y  =  ( a  oF  .+  b )  ->  ( y  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( a  oF  .+  b )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
118117eleq1d 2536 . . . 4  |-  ( y  =  ( a  oF  .+  b )  ->  ( ( y  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  <->  ( ( a  oF  .+  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
119 coeq1 5158 . . . . 5  |-  ( y  =  ( a  oF  .x.  b )  ->  ( y  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( a  oF  .x.  b )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
120119eleq1d 2536 . . . 4  |-  ( y  =  ( a  oF  .x.  b )  ->  ( ( y  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }  <->  ( ( a  oF  .x.  b )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
121 coeq1 5158 . . . . 5  |-  ( y  =  ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  ->  ( y  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  =  ( ( A  o.  ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
122121eleq1d 2536 . . . 4  |-  ( y  =  ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  ->  ( (
y  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } 
<->  ( ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } ) )
12317pf1rcl 18153 . . . . . . . . 9  |-  ( A  e.  Q  ->  R  e.  CRing )
12416, 123syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  CRing )
125124adantr 465 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  R  e.  CRing )
126 1on 7134 . . . . . . . . . . . 12  |-  1o  e.  On
127 eqid 2467 . . . . . . . . . . . . 13  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
128127mplassa 17884 . . . . . . . . . . . 12  |-  ( ( 1o  e.  On  /\  R  e.  CRing )  -> 
( 1o mPoly  R )  e. AssAlg )
129126, 124, 128sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( 1o mPoly  R )  e. AssAlg )
130 eqid 2467 . . . . . . . . . . . . 13  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
131 eqid 2467 . . . . . . . . . . . . 13  |-  (algSc `  (Poly1 `  R ) )  =  (algSc `  (Poly1 `  R
) )
132130, 131ply1ascl 18067 . . . . . . . . . . . 12  |-  (algSc `  (Poly1 `  R ) )  =  (algSc `  ( 1o mPoly  R ) )
133 eqid 2467 . . . . . . . . . . . 12  |-  (Scalar `  ( 1o mPoly  R ) )  =  (Scalar `  ( 1o mPoly  R ) )
134132, 133asclrhm 17759 . . . . . . . . . . 11  |-  ( ( 1o mPoly  R )  e. AssAlg  ->  (algSc `  (Poly1 `  R
) )  e.  ( (Scalar `  ( 1o mPoly  R ) ) RingHom  ( 1o mPoly  R ) ) )
135129, 134syl 16 . . . . . . . . . 10  |-  ( ph  ->  (algSc `  (Poly1 `  R
) )  e.  ( (Scalar `  ( 1o mPoly  R ) ) RingHom  ( 1o mPoly  R ) ) )
136126a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1o  e.  On )
137127, 136, 124mplsca 17875 . . . . . . . . . . 11  |-  ( ph  ->  R  =  (Scalar `  ( 1o mPoly  R ) ) )
138137oveq1d 6297 . . . . . . . . . 10  |-  ( ph  ->  ( R RingHom  ( 1o mPoly  R ) )  =  ( (Scalar `  ( 1o mPoly  R ) ) RingHom  ( 1o mPoly  R ) ) )
139135, 138eleqtrrd 2558 . . . . . . . . 9  |-  ( ph  ->  (algSc `  (Poly1 `  R
) )  e.  ( R RingHom  ( 1o mPoly  R
) ) )
140 eqid 2467 . . . . . . . . . 10  |-  ( Base `  ( 1o mPoly  R )
)  =  ( Base `  ( 1o mPoly  R )
)
1413, 140rhmf 17156 . . . . . . . . 9  |-  ( (algSc `  (Poly1 `  R ) )  e.  ( R RingHom  ( 1o mPoly  R ) )  -> 
(algSc `  (Poly1 `  R
) ) : B --> ( Base `  ( 1o mPoly  R ) ) )
142139, 141syl 16 . . . . . . . 8  |-  ( ph  ->  (algSc `  (Poly1 `  R
) ) : B --> ( Base `  ( 1o mPoly  R ) ) )
143142ffvelrnda 6019 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
(algSc `  (Poly1 `  R
) ) `  a
)  e.  ( Base `  ( 1o mPoly  R )
) )
144 eqid 2467 . . . . . . . 8  |-  (eval1 `  R
)  =  (eval1 `  R
)
145144, 24, 3, 127, 140evl1val 18133 . . . . . . 7  |-  ( ( R  e.  CRing  /\  (
(algSc `  (Poly1 `  R
) ) `  a
)  e.  ( Base `  ( 1o mPoly  R )
) )  ->  (
(eval1 `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  a
) )  =  ( ( ( 1o eval  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 a ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
146125, 143, 145syl2anc 661 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
(eval1 `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  a
) )  =  ( ( ( 1o eval  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 a ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
147144, 130, 3, 131evl1sca 18138 . . . . . . 7  |-  ( ( R  e.  CRing  /\  a  e.  B )  ->  (
(eval1 `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  a
) )  =  ( B  X.  { a } ) )
148124, 147sylan 471 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
(eval1 `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  a
) )  =  ( B  X.  { a } ) )
1493ressid 14543 . . . . . . . . . . . . . 14  |-  ( R  e.  CRing  ->  ( Rs  B
)  =  R )
150125, 149syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  B )  ->  ( Rs  B )  =  R )
151150oveq2d 6298 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  ( 1o mPoly  ( Rs  B ) )  =  ( 1o mPoly  R )
)
152151fveq2d 5868 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  (algSc `  ( 1o mPoly  ( Rs  B
) ) )  =  (algSc `  ( 1o mPoly  R ) ) )
153152, 132syl6eqr 2526 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  B )  ->  (algSc `  ( 1o mPoly  ( Rs  B
) ) )  =  (algSc `  (Poly1 `  R
) ) )
154153fveq1d 5866 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  (
(algSc `  ( 1o mPoly  ( Rs  B ) ) ) `
 a )  =  ( (algSc `  (Poly1 `  R ) ) `  a ) )
155154fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
( 1o eval  R ) `  ( (algSc `  ( 1o mPoly  ( Rs  B ) ) ) `
 a ) )  =  ( ( 1o eval  R ) `  (
(algSc `  (Poly1 `  R
) ) `  a
) ) )
156 eqid 2467 . . . . . . . . 9  |-  ( 1o mPoly 
( Rs  B ) )  =  ( 1o mPoly  ( Rs  B
) )
157 eqid 2467 . . . . . . . . 9  |-  ( Rs  B )  =  ( Rs  B )
158 eqid 2467 . . . . . . . . 9  |-  (algSc `  ( 1o mPoly  ( Rs  B
) ) )  =  (algSc `  ( 1o mPoly  ( Rs  B ) ) )
159126a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  1o  e.  On )
160 crngrng 16993 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  R  e.  Ring )
1613subrgid 17211 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  B  e.  (SubRing `  R )
)
162124, 160, 1613syl 20 . . . . . . . . . 10  |-  ( ph  ->  B  e.  (SubRing `  R
) )
163162adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  B  e.  (SubRing `  R )
)
164 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
16525, 156, 157, 3, 158, 159, 125, 163, 164evlssca 17959 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
( 1o eval  R ) `  ( (algSc `  ( 1o mPoly  ( Rs  B ) ) ) `
 a ) )  =  ( ( B  ^m  1o )  X. 
{ a } ) )
166155, 165eqtr3d 2510 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( 1o eval  R ) `  ( (algSc `  (Poly1 `  R ) ) `  a ) )  =  ( ( B  ^m  1o )  X.  { a } ) )
167166coeq1d 5162 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( 1o eval  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 a ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  =  ( ( ( B  ^m  1o )  X.  { a } )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) ) )
168146, 148, 1673eqtr3d 2516 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( B  X.  { a } )  =  ( ( ( B  ^m  1o )  X.  { a } )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) ) )
169 pf1ind.co . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  ch )
170 snex 4688 . . . . . . . . . 10  |-  { f }  e.  _V
1715, 170xpex 6711 . . . . . . . . 9  |-  ( B  X.  { f } )  e.  _V
172 pf1ind.wa . . . . . . . . 9  |-  ( x  =  ( B  X.  { f } )  ->  ( ps  <->  ch )
)
173171, 172elab 3250 . . . . . . . 8  |-  ( ( B  X.  { f } )  e.  {
x  |  ps }  <->  ch )
174169, 173sylibr 212 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  ( B  X.  { f } )  e.  { x  |  ps } )
175174ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. f  e.  B  ( B  X.  { f } )  e.  {
x  |  ps }
)
176 sneq 4037 . . . . . . . . 9  |-  ( f  =  a  ->  { f }  =  { a } )
177176xpeq2d 5023 . . . . . . . 8  |-  ( f  =  a  ->  ( B  X.  { f } )  =  ( B  X.  { a } ) )
178177eleq1d 2536 . . . . . . 7  |-  ( f  =  a  ->  (
( B  X.  {
f } )  e. 
{ x  |  ps } 
<->  ( B  X.  {
a } )  e. 
{ x  |  ps } ) )
179178rspccva 3213 . . . . . 6  |-  ( ( A. f  e.  B  ( B  X.  { f } )  e.  {
x  |  ps }  /\  a  e.  B
)  ->  ( B  X.  { a } )  e.  { x  |  ps } )
180175, 179sylan 471 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( B  X.  { a } )  e.  { x  |  ps } )
181168, 180eqeltrrd 2556 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( B  ^m  1o )  X.  { a } )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )
182 pf1ind.pr . . . . . . . 8  |-  ( ph  ->  th )
183 resiexg 6717 . . . . . . . . . 10  |-  ( B  e.  _V  ->  (  _I  |`  B )  e. 
_V )
1845, 183ax-mp 5 . . . . . . . . 9  |-  (  _I  |`  B )  e.  _V
185 pf1ind.wb . . . . . . . . 9  |-  ( x  =  (  _I  |`  B )  ->  ( ps  <->  th )
)
186184, 185elab 3250 . . . . . . . 8  |-  ( (  _I  |`  B )  e.  { x  |  ps } 
<->  th )
187182, 186sylibr 212 . . . . . . 7  |-  ( ph  ->  (  _I  |`  B )  e.  { x  |  ps } )
18813, 187eqeltrd 2555 . . . . . 6  |-  ( ph  ->  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  { x  |  ps } )
189 el1o 7146 . . . . . . . . . 10  |-  ( a  e.  1o  <->  a  =  (/) )
190 fveq2 5864 . . . . . . . . . 10  |-  ( a  =  (/)  ->  ( b `
 a )  =  ( b `  (/) ) )
191189, 190sylbi 195 . . . . . . . . 9  |-  ( a  e.  1o  ->  (
b `  a )  =  ( b `  (/) ) )
192191mpteq2dv 4534 . . . . . . . 8  |-  ( a  e.  1o  ->  (
b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  =  ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) ) )
193192coeq1d 5162 . . . . . . 7  |-  ( a  e.  1o  ->  (
( b  e.  ( B  ^m  1o ) 
|->  ( b `  a
) )  o.  (
w  e.  B  |->  ( 1o  X.  { w } ) ) )  =  ( ( b  e.  ( B  ^m  1o )  |->  ( b `
 (/) ) )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) ) )
194193eleq1d 2536 . . . . . 6  |-  ( a  e.  1o  ->  (
( ( b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps }  <->  ( (
b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) )  o.  ( w  e.  B  |->  ( 1o  X.  { w } ) ) )  e.  {
x  |  ps }
) )
195188, 194syl5ibrcom 222 . . . . 5  |-  ( ph  ->  ( a  e.  1o  ->  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  o.  ( w  e.  B  |->  ( 1o  X.  {
w } ) ) )  e.  { x  |  ps } ) )
196195imp 429 . . . 4  |-  ( (
ph  /\  a  e.  1o )  ->  ( ( b  e.  ( B  ^m  1o )  |->  ( b `  a ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )
19717, 3, 28pf1mpf 18156 . . . . 5  |-  ( A  e.  Q  ->  ( A  o.  ( b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) ) )  e. 
ran  ( 1o eval  R
) )
19816, 197syl 16 . . . 4  |-  ( ph  ->  ( A  o.  (
b  e.  ( B  ^m  1o )  |->  ( b `  (/) ) ) )  e.  ran  ( 1o eval  R ) )
1993, 22, 23, 26, 84, 108, 110, 112, 114, 116, 118, 120, 122, 181, 196, 198mpfind 17973 . . 3  |-  ( ph  ->  ( ( A  o.  ( b  e.  ( B  ^m  1o ) 
|->  ( b `  (/) ) ) )  o.  ( w  e.  B  |->  ( 1o 
X.  { w }
) ) )  e. 
{ x  |  ps } )
20021, 199eqeltrrd 2556 . 2  |-  ( ph  ->  A  e.  { x  |  ps } )
201 pf1ind.wg . . . 4  |-  ( x  =  A  ->  ( ps 
<->  rh ) )
202201elabg 3251 . . 3  |-  ( A  e.  Q  ->  ( A  e.  { x  |  ps }  <->  rh )
)
20316, 202syl 16 . 2  |-  ( ph  ->  ( A  e.  {
x  |  ps }  <->  rh ) )
204200, 203mpbid 210 1  |-  ( ph  ->  rh )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   _Vcvv 3113   (/)c0 3785   {csn 4027    |-> cmpt 4505    _I cid 4790   Oncon0 4878    X. cxp 4997   `'ccnv 4998   ran crn 5000    |` cres 5001    o. ccom 5003    Fn wfn 5581   -->wf 5582   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    oFcof 6520   1oc1o 7120    ^m cmap 7417   Basecbs 14483   ↾s cress 14484   +g cplusg 14548   .rcmulr 14549  Scalarcsca 14551   Ringcrg 16983   CRingccrg 16984   RingHom crh 17142  SubRingcsubrg 17205  AssAlgcasa 17726  algSccascl 17728   mPoly cmpl 17770   evalSub ces 17937   eval cevl 17938  Poly1cpl1 17984  eval1ce1 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12071  df-hash 12368  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-hom 14572  df-cco 14573  df-0g 14690  df-gsum 14691  df-prds 14696  df-pws 14698  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-mhm 15774  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mulg 15858  df-subg 15990  df-ghm 16057  df-cntz 16147  df-cmn 16593  df-abl 16594  df-mgp 16929  df-ur 16941  df-srg 16945  df-rng 16985  df-cring 16986  df-rnghom 17145  df-subrg 17207  df-lmod 17294  df-lss 17359  df-lsp 17398  df-assa 17729  df-asp 17730  df-ascl 17731  df-psr 17773  df-mvr 17774  df-mpl 17775  df-opsr 17777  df-evls 17939  df-evl 17940  df-psr1 17987  df-ply1 17989  df-evl1 18121
This theorem is referenced by:  pl1cn  27570
  Copyright terms: Public domain W3C validator