MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem4 20433
Description: Lemma 4 for mp2pm2mp 20435. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝐾   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem mp2pm2mplem4
Dummy variables 𝑎 𝑏 𝑠 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . 3 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . 3 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . 3 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . 3 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . 3 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8 mp2pm2mplem2.p . . 3 𝑃 = (Poly1𝑅)
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 20432 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
10 eqid 2610 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
11 eqid 2610 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
128ply1ring 19439 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
13123ad2ant2 1076 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
14 ringcmn 18404 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
1615ad3antrrr 762 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑃 ∈ CMnd)
17163ad2ant1 1075 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
18 simpl2 1058 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
1918ad2antrr 758 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Ring)
20193ad2ant1 1075 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
2120adantr 480 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
22 eqid 2610 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2610 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
24 simpl2 1058 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
25 simpl3 1059 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
26 simpl3 1059 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑂𝐿)
2726ad2antrr 758 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑂𝐿)
28273ad2ant1 1075 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
29 eqid 2610 . . . . . . . . . . . . . 14 (coe1𝑂) = (coe1𝑂)
3029, 3, 2, 23coe1fvalcl 19403 . . . . . . . . . . . . 13 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
3128, 30sylan 487 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
321, 22, 23, 24, 25, 31matecld 20051 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
33 simpr 476 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
34 eqid 2610 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3522, 8, 6, 4, 34, 5, 10ply1tmcl 19463 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3621, 32, 33, 35syl3anc 1318 . . . . . . . . . 10 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3736ralrimiva 2949 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
38 simp1lr 1118 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑠 ∈ ℕ0)
39 oveq 6555 . . . . . . . . . . . . . . . . 17 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝑖((coe1𝑂)‘𝑥)𝑗) = (𝑖(0g𝐴)𝑗))
4039oveq1d 6564 . . . . . . . . . . . . . . . 16 (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)))
41 3simpa 1051 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4241ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝑅) = (0g𝑅)
441, 43mat0op 20044 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
46 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
47 simprl 790 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
48 simprr 792 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
49 fvex 6113 . . . . . . . . . . . . . . . . . . . . . 22 (0g𝑅) ∈ V
5049a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
5145, 46, 47, 48, 50ovmpt2d 6686 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5251adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5352oveq1d 6564 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = ((0g𝑅) · (𝑥𝐸𝑌)))
5418ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
558ply1sca 19444 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5756fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5857oveq1d 6564 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) · (𝑥𝐸𝑌)) = ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)))
598ply1lmod 19443 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
60593ad2ant2 1076 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
6160ad4antr 764 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ LMod)
62 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
638, 6, 34, 5, 10ply1moncl 19462 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
6454, 62, 63syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
65 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (Scalar‘𝑃) = (Scalar‘𝑃)
66 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
6710, 65, 4, 66, 11lmod0vs 18719 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6861, 64, 67syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6953, 58, 683eqtrd 2648 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7069adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7140, 70sylan9eqr 2666 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7271exp31 628 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7372a2d 29 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7473ralimdva 2945 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7574impancom 455 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
76753impib 1254 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
77 breq2 4587 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑠 < 𝑘𝑠 < 𝑥))
78 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥))
7978oveqd 6566 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑥)𝑗))
80 oveq1 6556 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝐸𝑌) = (𝑥𝐸𝑌))
8179, 80oveq12d 6567 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)))
8281eqeq1d 2612 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃) ↔ ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8377, 82imbi12d 333 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
8483cbvralv 3147 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8576, 84sylibr 223 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)))
8610, 11, 17, 37, 38, 85gsummptnn0fzv 18206 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
8786fveq2d 6107 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8887fveq1d 6105 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
89 simpllr 795 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝐾 ∈ ℕ0)
90893ad2ant1 1075 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
91 elfznn0 12302 . . . . . . . . . 10 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
9236expcom 450 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9391, 92syl 17 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9493com12 32 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9594ralrimiv 2948 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
96 fzfid 12634 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ Fin)
978, 10, 20, 90, 95, 96coe1fzgsumd 19493 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9888, 97eqtrd 2644 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9998mpt2eq3dva 6617 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))))
100183ad2ant1 1075 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
101100adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
102 simpl2 1058 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑖𝑁)
103 simpl3 1059 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑗𝑁)
104263ad2ant1 1075 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
105104, 91, 30syl2an 493 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1061, 22, 23, 102, 103, 105matecld 20051 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
10791adantl 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
10843, 22, 8, 6, 4, 34, 5coe1tm 19464 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
109101, 106, 107, 108syl3anc 1318 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
110 eqeq1 2614 . . . . . . . . . . 11 (𝑙 = 𝐾 → (𝑙 = 𝑘𝐾 = 𝑘))
111110ifbid 4058 . . . . . . . . . 10 (𝑙 = 𝐾 → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
112111adantl 481 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑙 = 𝐾) → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
113 simpl1r 1106 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝐾 ∈ ℕ0)
114 ovex 6577 . . . . . . . . . . 11 (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ V
115114, 49ifex 4106 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V
116115a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V)
117109, 112, 113, 116fvmptd 6197 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
118117mpteq2dva 4672 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
119118oveq2d 6565 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))))
120119mpt2eq3dva 6617 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
121120ad2antrr 758 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
122 breq2 4587 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (𝑠 < 𝑥𝑠 < 𝐾))
123 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝐾 → ((coe1𝑂)‘𝑥) = ((coe1𝑂)‘𝐾))
124123eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (((coe1𝑂)‘𝑥) = (0g𝐴) ↔ ((coe1𝑂)‘𝐾) = (0g𝐴)))
125122, 124imbi12d 333 . . . . . . . . . . . . 13 (𝑥 = 𝐾 → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) ↔ (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴))))
126125rspcva 3280 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)))
1271, 43mat0op 20044 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
128127eqcomd 2616 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
1291283adant3 1074 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
130129ad3antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
131 elfz2nn0 12300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
132 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
133132ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑘 ∈ ℝ)
134 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
135134ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℝ)
136 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
138 lelttr 10007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
139133, 135, 137, 138syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
140 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → 𝑘 < 𝐾)
141140olcd 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾 < 𝑘𝑘 < 𝐾))
142 df-ne 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾𝑘 ↔ ¬ 𝐾 = 𝑘)
143132adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
144 lttri2 9999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
145136, 143, 144syl2anr 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
147142, 146syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (¬ 𝐾 = 𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
148141, 147mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → ¬ 𝐾 = 𝑘)
149148ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑘 < 𝐾 → ¬ 𝐾 = 𝑘))
150139, 149syld 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → ¬ 𝐾 = 𝑘))
151150exp4b 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐾 → ¬ 𝐾 = 𝑘))))
152151com24 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
153152expimpd 627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
154153com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
155154imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
1561553adant2 1073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
157131, 156sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
158157com13 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
159158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
160159imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
161160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
1621613ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
163162imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐾 = 𝑘)
164163iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = (0g𝑅))
165164mpteq2dva 4672 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ (0g𝑅)))
166165oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))))
167 ringmnd 18379 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1681673ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑅 ∈ Mnd)
169 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . 23 (0...𝑠) ∈ V
17043gsumz 17197 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
171168, 169, 170sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
172171ad3antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
1731723ad2ant1 1075 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
174166, 173eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (0g𝑅))
175174mpt2eq3dva 6617 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
176 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((coe1𝑂)‘𝐾) = (0g𝐴))
177130, 175, 1763eqtr4d 2654 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
178177ex 449 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
179178expr 641 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
180179a2d 29 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
181180exp31 628 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
182181com14 94 . . . . . . . . . . . 12 ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
183126, 182syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
184183ex 449 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
185184com25 97 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
186185pm2.43i 50 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
187186impcom 445 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))
188187imp31 447 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
189188com12 32 . . . . 5 (𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
190168ad3antrrr 762 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Mnd)
191190adantl 481 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑅 ∈ Mnd)
1921913ad2ant1 1075 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Mnd)
193169a1i 11 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ V)
194 lenlt 9995 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
195136, 134, 194syl2an 493 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
196 simpll 786 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ ℕ0)
197 simplr 788 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝑠 ∈ ℕ0)
198 simpr 476 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾𝑠)
199 elfz2nn0 12300 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (0...𝑠) ↔ (𝐾 ∈ ℕ0𝑠 ∈ ℕ0𝐾𝑠))
200196, 197, 198, 199syl3anbrc 1239 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ (0...𝑠))
201200ex 449 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠𝐾 ∈ (0...𝑠)))
202195, 201sylbird 249 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
203202adantll 746 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
204203adantr 480 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
205204impcom 445 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝐾 ∈ (0...𝑠))
2062053ad2ant1 1075 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ (0...𝑠))
207 eqcom 2617 . . . . . . . . . . 11 (𝐾 = 𝑘𝑘 = 𝐾)
208 ifbi 4057 . . . . . . . . . . 11 ((𝐾 = 𝑘𝑘 = 𝐾) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
209207, 208ax-mp 5 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))
210209mpteq2i 4669 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
211 simpl2 1058 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
212 simpl3 1059 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
21327adantl 481 . . . . . . . . . . . . . 14 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑂𝐿)
2142133ad2ant1 1075 . . . . . . . . . . . . 13 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
215214, 30sylan 487 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
2161, 22, 23, 211, 212, 215matecld 20051 . . . . . . . . . . 11 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21791, 216sylan2 490 . . . . . . . . . 10 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
218217ralrimiva 2949 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21943, 192, 193, 206, 210, 218gsummpt1n0 18187 . . . . . . . 8 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))
220219mpt2eq3dva 6617 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)))
221 csbov 6586 . . . . . . . . . . . . . . 15 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗)
222 csbfv 6143 . . . . . . . . . . . . . . . . 17 𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾)
223222a1i 11 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾))
224223oveqd 6566 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
225221, 224syl5eq 2656 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
226225ad2antlr 759 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
227226mpt2eq3dv 6619 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖((coe1𝑂)‘𝐾)𝑗)))
228 oveq12 6558 . . . . . . . . . . . . 13 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
229228adantl 481 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
230 simprl 790 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
231 simprr 792 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
232 ovex 6577 . . . . . . . . . . . . 13 (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V
233232a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V)
234227, 229, 230, 231, 233ovmpt2d 6686 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
235234ralrimivva 2954 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
236 simpl1 1057 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
237222oveqi 6562 . . . . . . . . . . . . . 14 (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
238221, 237eqtri 2632 . . . . . . . . . . . . 13 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
239 simp2 1055 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
240 simp3 1056 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
24129, 3, 2, 23coe1fvalcl 19403 . . . . . . . . . . . . . . . 16 ((𝑂𝐿𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2422413ad2antl3 1218 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2432423ad2ant1 1075 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2441, 22, 23, 239, 240, 243matecld 20051 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((coe1𝑂)‘𝐾)𝑗) ∈ (Base‘𝑅))
245238, 244syl5eqel 2692 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
2461, 22, 23, 236, 18, 245matbas2d 20048 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴))
2471, 23eqmat 20049 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴) ∧ ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
248246, 242, 247syl2anc 691 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
249235, 248mpbird 246 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
250249ad2antrr 758 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
251250adantl 481 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
252220, 251eqtrd 2644 . . . . . 6 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
253252ex 449 . . . . 5 𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
254189, 253pm2.61i 175 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
25599, 121, 2543eqtrd 2648 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
256 eqid 2610 . . . . . 6 (0g𝐴) = (0g𝐴)
25729, 3, 2, 256coe1sfi 19404 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
25826, 257syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) finSupp (0g𝐴))
25929, 3, 2, 256, 23coe1fsupp 19405 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑥 finSupp (0g𝐴)})
260 elrabi 3328 . . . . . 6 ((coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑥 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
26126, 259, 2603syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
262 fvex 6113 . . . . 5 (0g𝐴) ∈ V
263 fsuppmapnn0ub 12657 . . . . 5 (((coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
264261, 262, 263sylancl 693 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
265258, 264mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
266255, 265r19.29a 3060 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
2679, 266eqtrd 2644 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  csb 3499  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  cr 9814  0cc0 9815   < clt 9953  cle 9954  0cn0 11169  ...cfz 12197  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  .gcmg 17363  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  LModclmod 18686  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032   decompPMat cdecpmat 20386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-decpmat 20387
This theorem is referenced by:  mp2pm2mplem5  20434  mp2pm2mp  20435
  Copyright terms: Public domain W3C validator