MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tm Structured version   Visualization version   GIF version

Theorem coe1tm 19464
Description: Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
Assertion
Ref Expression
coe1tm ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝑥,𝑅   𝑥, ·

Proof of Theorem coe1tm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1tm.k . . . 4 𝐾 = (Base‘𝑅)
2 coe1tm.p . . . 4 𝑃 = (Poly1𝑅)
3 coe1tm.x . . . 4 𝑋 = (var1𝑅)
4 coe1tm.m . . . 4 · = ( ·𝑠𝑃)
5 coe1tm.n . . . 4 𝑁 = (mulGrp‘𝑃)
6 coe1tm.e . . . 4 = (.g𝑁)
7 eqid 2610 . . . 4 (Base‘𝑃) = (Base‘𝑃)
81, 2, 3, 4, 5, 6, 7ply1tmcl 19463 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃))
9 eqid 2610 . . . 4 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
10 eqid 2610 . . . 4 (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥}))
119, 7, 2, 10coe1fval2 19401 . . 3 ((𝐶 · (𝐷 𝑋)) ∈ (Base‘𝑃) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥}))))
128, 11syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥}))))
13 fconst6g 6007 . . . . 5 (𝑥 ∈ ℕ0 → (1𝑜 × {𝑥}):1𝑜⟶ℕ0)
14 nn0ex 11175 . . . . . 6 0 ∈ V
15 1on 7454 . . . . . . 7 1𝑜 ∈ On
1615elexi 3186 . . . . . 6 1𝑜 ∈ V
1714, 16elmap 7772 . . . . 5 ((1𝑜 × {𝑥}) ∈ (ℕ0𝑚 1𝑜) ↔ (1𝑜 × {𝑥}):1𝑜⟶ℕ0)
1813, 17sylibr 223 . . . 4 (𝑥 ∈ ℕ0 → (1𝑜 × {𝑥}) ∈ (ℕ0𝑚 1𝑜))
1918adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (1𝑜 × {𝑥}) ∈ (ℕ0𝑚 1𝑜))
20 eqidd 2611 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥})))
21 eqid 2610 . . . . . . . 8 (.g‘(mulGrp‘(1𝑜 mPoly 𝑅))) = (.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))
225, 7mgpbas 18318 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑁)
2322a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘𝑁))
24 eqid 2610 . . . . . . . . . 10 (mulGrp‘(1𝑜 mPoly 𝑅)) = (mulGrp‘(1𝑜 mPoly 𝑅))
25 eqid 2610 . . . . . . . . . . 11 (PwSer1𝑅) = (PwSer1𝑅)
262, 25, 7ply1bas 19386 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅))
2724, 26mgpbas 18318 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘(1𝑜 mPoly 𝑅)))
2827a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) = (Base‘(mulGrp‘(1𝑜 mPoly 𝑅))))
29 ssv 3588 . . . . . . . . 9 (Base‘𝑃) ⊆ V
3029a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑃) ⊆ V)
31 ovex 6577 . . . . . . . . 9 (𝑥(+g𝑁)𝑦) ∈ V
3231a1i 11 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) ∈ V)
33 eqid 2610 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
345, 33mgpplusg 18316 . . . . . . . . . . 11 (.r𝑃) = (+g𝑁)
35 eqid 2610 . . . . . . . . . . . . 13 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
362, 35, 33ply1mulr 19418 . . . . . . . . . . . 12 (.r𝑃) = (.r‘(1𝑜 mPoly 𝑅))
3724, 36mgpplusg 18316 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘(1𝑜 mPoly 𝑅)))
3834, 37eqtr3i 2634 . . . . . . . . . 10 (+g𝑁) = (+g‘(mulGrp‘(1𝑜 mPoly 𝑅)))
3938a1i 11 . . . . . . . . 9 (𝑅 ∈ Ring → (+g𝑁) = (+g‘(mulGrp‘(1𝑜 mPoly 𝑅))))
4039oveqdr 6573 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑁)𝑦) = (𝑥(+g‘(mulGrp‘(1𝑜 mPoly 𝑅)))𝑦))
416, 21, 23, 28, 30, 32, 40mulgpropd 17407 . . . . . . 7 (𝑅 ∈ Ring → = (.g‘(mulGrp‘(1𝑜 mPoly 𝑅))))
42413ad2ant1 1075 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → = (.g‘(mulGrp‘(1𝑜 mPoly 𝑅))))
43 eqidd 2611 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 = 𝐷)
443vr1val 19383 . . . . . . 7 𝑋 = ((1𝑜 mVar 𝑅)‘∅)
4544a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑋 = ((1𝑜 mVar 𝑅)‘∅))
4642, 43, 45oveq123d 6570 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐷 𝑋) = (𝐷(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))((1𝑜 mVar 𝑅)‘∅)))
4746oveq2d 6565 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝐶 · (𝐷(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))((1𝑜 mVar 𝑅)‘∅))))
48 psr1baslem 19376 . . . . . 6 (ℕ0𝑚 1𝑜) = {𝑎 ∈ (ℕ0𝑚 1𝑜) ∣ (𝑎 “ ℕ) ∈ Fin}
49 coe1tm.z . . . . . 6 0 = (0g𝑅)
50 eqid 2610 . . . . . 6 (1r𝑅) = (1r𝑅)
5115a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 1𝑜 ∈ On)
52 eqid 2610 . . . . . 6 (1𝑜 mVar 𝑅) = (1𝑜 mVar 𝑅)
53 simp1 1054 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝑅 ∈ Ring)
54 0lt1o 7471 . . . . . . 7 ∅ ∈ 1𝑜
5554a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ∅ ∈ 1𝑜)
56 simp3 1056 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐷 ∈ ℕ0)
5735, 48, 49, 50, 51, 24, 21, 52, 53, 55, 56mplcoe3 19287 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑦 ∈ (ℕ0𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 )) = (𝐷(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))((1𝑜 mVar 𝑅)‘∅)))
5857oveq2d 6565 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝐶 · (𝐷(.g‘(mulGrp‘(1𝑜 mPoly 𝑅)))((1𝑜 mVar 𝑅)‘∅))))
592, 35, 4ply1vsca 19417 . . . . 5 · = ( ·𝑠 ‘(1𝑜 mPoly 𝑅))
60 elsni 4142 . . . . . . . . . . 11 (𝑏 ∈ {∅} → 𝑏 = ∅)
61 df1o2 7459 . . . . . . . . . . 11 1𝑜 = {∅}
6260, 61eleq2s 2706 . . . . . . . . . 10 (𝑏 ∈ 1𝑜𝑏 = ∅)
6362iftrued 4044 . . . . . . . . 9 (𝑏 ∈ 1𝑜 → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6463adantl 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑏 ∈ 1𝑜) → if(𝑏 = ∅, 𝐷, 0) = 𝐷)
6564mpteq2dva 4672 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) = (𝑏 ∈ 1𝑜𝐷))
66 fconstmpt 5085 . . . . . . 7 (1𝑜 × {𝐷}) = (𝑏 ∈ 1𝑜𝐷)
6765, 66syl6eqr 2662 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) = (1𝑜 × {𝐷}))
68 fconst6g 6007 . . . . . . . 8 (𝐷 ∈ ℕ0 → (1𝑜 × {𝐷}):1𝑜⟶ℕ0)
6914, 16elmap 7772 . . . . . . . 8 ((1𝑜 × {𝐷}) ∈ (ℕ0𝑚 1𝑜) ↔ (1𝑜 × {𝐷}):1𝑜⟶ℕ0)
7068, 69sylibr 223 . . . . . . 7 (𝐷 ∈ ℕ0 → (1𝑜 × {𝐷}) ∈ (ℕ0𝑚 1𝑜))
71703ad2ant3 1077 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (1𝑜 × {𝐷}) ∈ (ℕ0𝑚 1𝑜))
7267, 71eqeltrd 2688 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) ∈ (ℕ0𝑚 1𝑜))
73 simp2 1055 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → 𝐶𝐾)
7435, 59, 48, 50, 49, 1, 51, 53, 72, 73mplmon2 19314 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝑦 ∈ (ℕ0𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), (1r𝑅), 0 ))) = (𝑦 ∈ (ℕ0𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7547, 58, 743eqtr2d 2650 . . 3 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) = (𝑦 ∈ (ℕ0𝑚 1𝑜) ↦ if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
76 eqeq1 2614 . . . 4 (𝑦 = (1𝑜 × {𝑥}) → (𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0))))
7776ifbid 4058 . . 3 (𝑦 = (1𝑜 × {𝑥}) → if(𝑦 = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ))
7819, 20, 75, 77fmptco 6303 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((𝐶 · (𝐷 𝑋)) ∘ (𝑥 ∈ ℕ0 ↦ (1𝑜 × {𝑥}))) = (𝑥 ∈ ℕ0 ↦ if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )))
7967adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) = (1𝑜 × {𝐷}))
8079eqeq2d 2620 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ (1𝑜 × {𝑥}) = (1𝑜 × {𝐷})))
81 fveq1 6102 . . . . . . 7 ((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) → ((1𝑜 × {𝑥})‘∅) = ((1𝑜 × {𝐷})‘∅))
82 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
8382fvconst2 6374 . . . . . . . . 9 (∅ ∈ 1𝑜 → ((1𝑜 × {𝑥})‘∅) = 𝑥)
8454, 83mp1i 13 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝑥})‘∅) = 𝑥)
85 simpl3 1059 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝐷 ∈ ℕ0)
86 fvconst2g 6372 . . . . . . . . 9 ((𝐷 ∈ ℕ0 ∧ ∅ ∈ 1𝑜) → ((1𝑜 × {𝐷})‘∅) = 𝐷)
8785, 54, 86sylancl 693 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝐷})‘∅) = 𝐷)
8884, 87eqeq12d 2625 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((1𝑜 × {𝑥})‘∅) = ((1𝑜 × {𝐷})‘∅) ↔ 𝑥 = 𝐷))
8981, 88syl5ib 233 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) → 𝑥 = 𝐷))
90 sneq 4135 . . . . . . 7 (𝑥 = 𝐷 → {𝑥} = {𝐷})
9190xpeq2d 5063 . . . . . 6 (𝑥 = 𝐷 → (1𝑜 × {𝑥}) = (1𝑜 × {𝐷}))
9289, 91impbid1 214 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝑥}) = (1𝑜 × {𝐷}) ↔ 𝑥 = 𝐷))
9380, 92bitrd 267 . . . 4 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)) ↔ 𝑥 = 𝐷))
9493ifbid 4058 . . 3 (((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 ) = if(𝑥 = 𝐷, 𝐶, 0 ))
9594mpteq2dva 4672 . 2 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝑥 ∈ ℕ0 ↦ if((1𝑜 × {𝑥}) = (𝑏 ∈ 1𝑜 ↦ if(𝑏 = ∅, 𝐷, 0)), 𝐶, 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
9612, 78, 953eqtrd 2648 1 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  {csn 4125  cmpt 4643   × cxp 5036  ccom 5042  Oncon0 5640  wf 5800  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑚 cmap 7744  0cc0 9815  0cn0 11169  Basecbs 15695  +gcplusg 15768  .rcmulr 15769   ·𝑠 cvsca 15772  0gc0g 15923  .gcmg 17363  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370   mVar cmvr 19173   mPoly cmpl 19174  PwSer1cps1 19366  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374
This theorem is referenced by:  coe1tmfv1  19465  coe1tmfv2  19466  coe1scl  19478  gsummoncoe1  19495  decpmatid  20394  monmatcollpw  20403  mp2pm2mplem4  20433
  Copyright terms: Public domain W3C validator