MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Unicode version

Theorem mp2pm2mplem4 19820
Description: Lemma 4 for mp2pm2mp 19822. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a  |-  A  =  ( N Mat  R )
mp2pm2mp.q  |-  Q  =  (Poly1 `  A )
mp2pm2mp.l  |-  L  =  ( Base `  Q
)
mp2pm2mp.m  |-  .x.  =  ( .s `  P )
mp2pm2mp.e  |-  E  =  (.g `  (mulGrp `  P
) )
mp2pm2mp.y  |-  Y  =  (var1 `  R )
mp2pm2mp.i  |-  I  =  ( p  e.  L  |->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
mp2pm2mplem2.p  |-  P  =  (Poly1 `  R )
Assertion
Ref Expression
mp2pm2mplem4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
( I `  O
) decompPMat  K )  =  ( (coe1 `  O ) `  K ) )
Distinct variable groups:    E, p    L, p    i, N, j, p    i, O, j, p, k    P, p    R, p    Y, p    .x. , p    k, L    P, i, j, k    R, k    .x. , k    i, E, j    i, K, j   
i, L, j    k, N    R, i, j    i, Y, j    .x. , i, j    A, i, j, k    k, E    k, K    k, Y
Allowed substitution hints:    A( p)    Q( i, j, k, p)    I(
i, j, k, p)    K( p)

Proof of Theorem mp2pm2mplem4
Dummy variables  a 
b  s  x  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3  |-  A  =  ( N Mat  R )
2 mp2pm2mp.q . . 3  |-  Q  =  (Poly1 `  A )
3 mp2pm2mp.l . . 3  |-  L  =  ( Base `  Q
)
4 mp2pm2mp.m . . 3  |-  .x.  =  ( .s `  P )
5 mp2pm2mp.e . . 3  |-  E  =  (.g `  (mulGrp `  P
) )
6 mp2pm2mp.y . . 3  |-  Y  =  (var1 `  R )
7 mp2pm2mp.i . . 3  |-  I  =  ( p  e.  L  |->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
8 mp2pm2mplem2.p . . 3  |-  P  =  (Poly1 `  R )
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 19819 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
( I `  O
) decompPMat  K )  =  ( i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K ) ) )
10 eqid 2422 . . . . . . . . 9  |-  ( Base `  P )  =  (
Base `  P )
11 eqid 2422 . . . . . . . . 9  |-  ( 0g
`  P )  =  ( 0g `  P
)
128ply1ring 18829 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  P  e. 
Ring )
13123ad2ant2 1027 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  P  e.  Ring )
14 ringcmn 17799 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  P  e. CMnd
)
1513, 14syl 17 . . . . . . . . . . 11  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  P  e. CMnd )
1615ad3antrrr 734 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  P  e. CMnd )
17163ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  P  e. CMnd )
18 simpl2 1009 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  R  e.  Ring )
1918ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  R  e.  Ring )
20193ad2ant1 1026 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  R  e.  Ring )
2120adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  R  e.  Ring )
22 eqid 2422 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
23 eqid 2422 . . . . . . . . . . . 12  |-  ( Base `  A )  =  (
Base `  A )
24 simpl2 1009 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  i  e.  N )
25 simpl3 1010 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  j  e.  N )
26 simpl3 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  O  e.  L )
2726ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  O  e.  L )
28273ad2ant1 1026 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  O  e.  L )
29 eqid 2422 . . . . . . . . . . . . . 14  |-  (coe1 `  O
)  =  (coe1 `  O
)
3029, 3, 2, 23coe1fvalcl 18793 . . . . . . . . . . . . 13  |-  ( ( O  e.  L  /\  k  e.  NN0 )  -> 
( (coe1 `  O ) `  k )  e.  (
Base `  A )
)
3128, 30sylan 473 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  (
(coe1 `  O ) `  k )  e.  (
Base `  A )
)
321, 22, 23, 24, 25, 31matecld 19438 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  (
i ( (coe1 `  O
) `  k )
j )  e.  (
Base `  R )
)
33 simpr 462 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
34 eqid 2422 . . . . . . . . . . . 12  |-  (mulGrp `  P )  =  (mulGrp `  P )
3522, 8, 6, 4, 34, 5, 10ply1tmcl 18853 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
i ( (coe1 `  O
) `  k )
j )  e.  (
Base `  R )  /\  k  e.  NN0 )  ->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  e.  ( Base `  P
) )
3621, 32, 33, 35syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  (
( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) )  e.  (
Base `  P )
)
3736ralrimiva 2839 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  A. k  e.  NN0  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  e.  ( Base `  P
) )
38 simp1lr 1069 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  s  e.  NN0 )
39 oveq 6308 . . . . . . . . . . . . . . . . 17  |-  ( ( (coe1 `  O ) `  x )  =  ( 0g `  A )  ->  ( i ( (coe1 `  O ) `  x ) j )  =  ( i ( 0g `  A ) j ) )
4039oveq1d 6317 . . . . . . . . . . . . . . . 16  |-  ( ( (coe1 `  O ) `  x )  =  ( 0g `  A )  ->  ( ( i ( (coe1 `  O ) `  x ) j ) 
.x.  ( x E Y ) )  =  ( ( i ( 0g `  A ) j )  .x.  (
x E Y ) ) )
41 3simpa 1002 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
4241ad3antrrr 734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( N  e.  Fin  /\  R  e. 
Ring ) )
43 eqid 2422 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0g
`  R )  =  ( 0g `  R
)
441, 43mat0op 19431 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( 0g `  A
)  =  ( a  e.  N ,  b  e.  N  |->  ( 0g
`  R ) ) )
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( 0g `  A )  =  ( a  e.  N , 
b  e.  N  |->  ( 0g `  R ) ) )
46 eqidd 2423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( a  =  i  /\  b  =  j ) )  ->  ( 0g `  R )  =  ( 0g `  R ) )
47 simprl 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  i  e.  N )
48 simprr 764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  j  e.  N )
49 fvex 5888 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0g
`  R )  e. 
_V
5049a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( 0g `  R )  e.  _V )
5145, 46, 47, 48, 50ovmpt2d 6435 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( i
( 0g `  A
) j )  =  ( 0g `  R
) )
5251adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( i
( 0g `  A
) j )  =  ( 0g `  R
) )
5352oveq1d 6317 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( (
i ( 0g `  A ) j ) 
.x.  ( x E Y ) )  =  ( ( 0g `  R )  .x.  (
x E Y ) ) )
5418ad3antrrr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  R  e.  Ring )
558ply1sca 18834 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  Ring  ->  R  =  (Scalar `  P )
)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  R  =  (Scalar `  P ) )
5756fveq2d 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
5857oveq1d 6317 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( ( 0g `  R )  .x.  ( x E Y ) )  =  ( ( 0g `  (Scalar `  P ) )  .x.  ( x E Y ) ) )
598ply1lmod 18833 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  Ring  ->  P  e. 
LMod )
60593ad2ant2 1027 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  P  e.  LMod )
6160ad4antr 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  P  e.  LMod )
62 simpr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  x  e.  NN0 )
638, 6, 34, 5, 10ply1moncl 18852 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  x  e.  NN0 )  ->  (
x E Y )  e.  ( Base `  P
) )
6454, 62, 63syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( x E Y )  e.  (
Base `  P )
)
65 eqid 2422 . . . . . . . . . . . . . . . . . . . 20  |-  (Scalar `  P )  =  (Scalar `  P )
66 eqid 2422 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
6710, 65, 4, 66, 11lmod0vs 18112 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  LMod  /\  (
x E Y )  e.  ( Base `  P
) )  ->  (
( 0g `  (Scalar `  P ) )  .x.  ( x E Y ) )  =  ( 0g `  P ) )
6861, 64, 67syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( ( 0g `  (Scalar `  P
) )  .x.  (
x E Y ) )  =  ( 0g
`  P ) )
6953, 58, 683eqtrd 2467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( (
i ( 0g `  A ) j ) 
.x.  ( x E Y ) )  =  ( 0g `  P
) )
7069adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  /\  s  < 
x )  ->  (
( i ( 0g
`  A ) j )  .x.  ( x E Y ) )  =  ( 0g `  P ) )
7140, 70sylan9eqr 2485 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  /\  s  < 
x )  /\  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) )
7271exp31 607 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( s  <  x  ->  ( (
(coe1 `  O ) `  x )  =  ( 0g `  A )  ->  ( ( i ( (coe1 `  O ) `  x ) j ) 
.x.  ( x E Y ) )  =  ( 0g `  P
) ) ) )
7372a2d 29 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  x  e.  NN0 )  ->  ( (
s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( s  <  x  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) ) ) )
7473ralimdva 2833 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  A. x  e.  NN0  ( s  < 
x  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) ) ) )
7574impancom 441 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
( i  e.  N  /\  j  e.  N
)  ->  A. x  e.  NN0  ( s  < 
x  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) ) ) )
76753impib 1203 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  A. x  e.  NN0  ( s  < 
x  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) ) )
77 breq2 4424 . . . . . . . . . . . 12  |-  ( k  =  x  ->  (
s  <  k  <->  s  <  x ) )
78 fveq2 5878 . . . . . . . . . . . . . . 15  |-  ( k  =  x  ->  (
(coe1 `  O ) `  k )  =  ( (coe1 `  O ) `  x ) )
7978oveqd 6319 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  (
i ( (coe1 `  O
) `  k )
j )  =  ( i ( (coe1 `  O
) `  x )
j ) )
80 oveq1 6309 . . . . . . . . . . . . . 14  |-  ( k  =  x  ->  (
k E Y )  =  ( x E Y ) )
8179, 80oveq12d 6320 . . . . . . . . . . . . 13  |-  ( k  =  x  ->  (
( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) )  =  ( ( i ( (coe1 `  O ) `  x
) j )  .x.  ( x E Y ) ) )
8281eqeq1d 2424 . . . . . . . . . . . 12  |-  ( k  =  x  ->  (
( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  =  ( 0g `  P
)  <->  ( ( i ( (coe1 `  O ) `  x ) j ) 
.x.  ( x E Y ) )  =  ( 0g `  P
) ) )
8377, 82imbi12d 321 . . . . . . . . . . 11  |-  ( k  =  x  ->  (
( s  <  k  ->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  =  ( 0g `  P
) )  <->  ( s  <  x  ->  ( (
i ( (coe1 `  O
) `  x )
j )  .x.  (
x E Y ) )  =  ( 0g
`  P ) ) ) )
8483cbvralv 3055 . . . . . . . . . 10  |-  ( A. k  e.  NN0  ( s  <  k  ->  (
( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) )  =  ( 0g `  P ) )  <->  A. x  e.  NN0  ( s  <  x  ->  ( ( i ( (coe1 `  O ) `  x ) j ) 
.x.  ( x E Y ) )  =  ( 0g `  P
) ) )
8576, 84sylibr 215 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  A. k  e.  NN0  ( s  < 
k  ->  ( (
i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) )  =  ( 0g
`  P ) ) )
8610, 11, 17, 37, 38, 85gsummptnn0fzv 17604 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) )  =  ( P 
gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )
8786fveq2d 5882 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )  =  (coe1 `  ( P  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
8887fveq1d 5880 . . . . . 6  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
(coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K )  =  ( (coe1 `  ( P  gsumg  ( k  e.  ( 0 ... s )  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K ) )
89 simpllr 767 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  K  e.  NN0 )
90893ad2ant1 1026 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  K  e.  NN0 )
91 elfznn0 11888 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... s )  ->  k  e.  NN0 )
9236expcom 436 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) )  e.  (
Base `  P )
) )
9391, 92syl 17 . . . . . . . . 9  |-  ( k  e.  ( 0 ... s )  ->  (
( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) )  e.  (
Base `  P )
) )
9493com12 32 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
k  e.  ( 0 ... s )  -> 
( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  e.  ( Base `  P
) ) )
9594ralrimiv 2837 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  A. k  e.  ( 0 ... s
) ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) )  e.  ( Base `  P
) )
96 fzfid 12186 . . . . . . 7  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
0 ... s )  e. 
Fin )
978, 10, 20, 90, 95, 96coe1fzgsumd 18884 . . . . . 6  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
(coe1 `  ( P  gsumg  ( k  e.  ( 0 ... s )  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K )  =  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) ) )
9888, 97eqtrd 2463 . . . . 5  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  (
(coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K )  =  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) ) )
9998mpt2eq3dva 6366 . . . 4  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K ) )  =  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) ) ) )
100183ad2ant1 1026 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  R  e.  Ring )
101100adantr 466 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  R  e.  Ring )
102 simpl2 1009 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  i  e.  N )
103 simpl3 1010 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  j  e.  N )
104263ad2ant1 1026 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  O  e.  L )
105104, 91, 30syl2an 479 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  (
(coe1 `  O ) `  k )  e.  (
Base `  A )
)
1061, 22, 23, 102, 103, 105matecld 19438 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  (
i ( (coe1 `  O
) `  k )
j )  e.  (
Base `  R )
)
10791adantl 467 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  k  e.  NN0 )
10843, 22, 8, 6, 4, 34, 5coe1tm 18854 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
i ( (coe1 `  O
) `  k )
j )  e.  (
Base `  R )  /\  k  e.  NN0 )  ->  (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) )  =  ( l  e. 
NN0  |->  if ( l  =  k ,  ( i ( (coe1 `  O
) `  k )
j ) ,  ( 0g `  R ) ) ) )
109101, 106, 107, 108syl3anc 1264 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) )  =  ( l  e. 
NN0  |->  if ( l  =  k ,  ( i ( (coe1 `  O
) `  k )
j ) ,  ( 0g `  R ) ) ) )
110 eqeq1 2426 . . . . . . . . . . 11  |-  ( l  =  K  ->  (
l  =  k  <->  K  =  k ) )
111110ifbid 3931 . . . . . . . . . 10  |-  ( l  =  K  ->  if ( l  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )  =  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) )
112111adantl 467 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  /\  l  =  K )  ->  if ( l  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )  =  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) )
113 simpl1r 1057 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  K  e.  NN0 )
114 ovex 6330 . . . . . . . . . . 11  |-  ( i ( (coe1 `  O ) `  k ) j )  e.  _V
115114, 49ifex 3977 . . . . . . . . . 10  |-  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) )  e.  _V
116115a1i 11 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )  e. 
_V )
117109, 112, 113, 116fvmptd 5967 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  ( 0 ... s
) )  ->  (
(coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K )  =  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) )
118117mpteq2dva 4507 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  (
k  e.  ( 0 ... s )  |->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) )  =  ( k  e.  ( 0 ... s
)  |->  if ( K  =  k ,  ( i ( (coe1 `  O
) `  k )
j ) ,  ( 0g `  R ) ) ) )
119118oveq2d 6318 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )
120119mpt2eq3dva 6366 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) ) )
121120ad2antrr 730 . . . 4  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( (coe1 `  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) `
 K ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) ) )
122 breq2 4424 . . . . . . . . . . . . . 14  |-  ( x  =  K  ->  (
s  <  x  <->  s  <  K ) )
123 fveq2 5878 . . . . . . . . . . . . . . 15  |-  ( x  =  K  ->  (
(coe1 `  O ) `  x )  =  ( (coe1 `  O ) `  K ) )
124123eqeq1d 2424 . . . . . . . . . . . . . 14  |-  ( x  =  K  ->  (
( (coe1 `  O ) `  x )  =  ( 0g `  A )  <-> 
( (coe1 `  O ) `  K )  =  ( 0g `  A ) ) )
125122, 124imbi12d 321 . . . . . . . . . . . . 13  |-  ( x  =  K  ->  (
( s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) )  <->  ( s  < 
K  ->  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) ) ) )
126125rspcva 3180 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  A. x  e.  NN0  (
s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
s  <  K  ->  ( (coe1 `  O ) `  K )  =  ( 0g `  A ) ) )
1271, 43mat0op 19431 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( 0g `  A
)  =  ( i  e.  N ,  j  e.  N  |->  ( 0g
`  R ) ) )
128127eqcomd 2430 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( i  e.  N ,  j  e.  N  |->  ( 0g `  R
) )  =  ( 0g `  A ) )
1291283adant3 1025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
i  e.  N , 
j  e.  N  |->  ( 0g `  R ) )  =  ( 0g
`  A ) )
130129ad3antlr 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( 0g `  R
) )  =  ( 0g `  A ) )
131 elfz2nn0 11886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  e.  ( 0 ... s )  <->  ( k  e.  NN0  /\  s  e. 
NN0  /\  k  <_  s ) )
132 nn0re 10879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( k  e.  NN0  ->  k  e.  RR )
133132ad2antrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  k  e.  RR )
134 nn0re 10879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( s  e.  NN0  ->  s  e.  RR )
135134ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  s  e.  RR )
136 nn0re 10879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( K  e.  NN0  ->  K  e.  RR )
137136adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  K  e.  RR )
138 lelttr 9725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( k  e.  RR  /\  s  e.  RR  /\  K  e.  RR )  ->  (
( k  <_  s  /\  s  <  K )  ->  k  <  K
) )
139133, 135, 137, 138syl3anc 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  ( ( k  <_  s  /\  s  <  K )  ->  k  <  K ) )
140 simpr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( ( k  e. 
NN0  /\  s  e.  NN0 )  /\  K  e. 
NN0 )  /\  k  <  K )  ->  k  <  K )
141140olcd 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( ( k  e. 
NN0  /\  s  e.  NN0 )  /\  K  e. 
NN0 )  /\  k  <  K )  ->  ( K  <  k  \/  k  <  K ) )
142 df-ne 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( K  =/=  k  <->  -.  K  =  k )
143132adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( k  e.  NN0  /\  s  e.  NN0 )  -> 
k  e.  RR )
144 lttri2 9717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  |-  ( ( K  e.  RR  /\  k  e.  RR )  ->  ( K  =/=  k  <->  ( K  <  k  \/  k  <  K ) ) )
145136, 143, 144syl2anr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  ( K  =/=  k  <->  ( K  < 
k  \/  k  < 
K ) ) )
146145adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( ( ( ( k  e. 
NN0  /\  s  e.  NN0 )  /\  K  e. 
NN0 )  /\  k  <  K )  ->  ( K  =/=  k  <->  ( K  <  k  \/  k  < 
K ) ) )
147142, 146syl5bbr 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( ( ( k  e. 
NN0  /\  s  e.  NN0 )  /\  K  e. 
NN0 )  /\  k  <  K )  ->  ( -.  K  =  k  <->  ( K  <  k  \/  k  <  K ) ) )
148141, 147mpbird 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( ( ( ( k  e. 
NN0  /\  s  e.  NN0 )  /\  K  e. 
NN0 )  /\  k  <  K )  ->  -.  K  =  k )
149148ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  ( k  < 
K  ->  -.  K  =  k ) )
150139, 149syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( k  e.  NN0  /\  s  e.  NN0 )  /\  K  e.  NN0 )  ->  ( ( k  <_  s  /\  s  <  K )  ->  -.  K  =  k )
)
151150exp4b 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( k  e.  NN0  /\  s  e.  NN0 )  -> 
( K  e.  NN0  ->  ( k  <_  s  ->  ( s  <  K  ->  -.  K  =  k ) ) ) )
152151com24 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( k  e.  NN0  /\  s  e.  NN0 )  -> 
( s  <  K  ->  ( k  <_  s  ->  ( K  e.  NN0  ->  -.  K  =  k ) ) ) )
153152expimpd 606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( k  e.  NN0  ->  ( ( s  e.  NN0  /\  s  <  K )  -> 
( k  <_  s  ->  ( K  e.  NN0  ->  -.  K  =  k ) ) ) )
154153com23 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  e.  NN0  ->  ( k  <_  s  ->  (
( s  e.  NN0  /\  s  <  K )  ->  ( K  e. 
NN0  ->  -.  K  =  k ) ) ) )
155154imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( k  e.  NN0  /\  k  <_  s )  -> 
( ( s  e. 
NN0  /\  s  <  K )  ->  ( K  e.  NN0  ->  -.  K  =  k ) ) )
1561553adant2 1024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( k  e.  NN0  /\  s  e.  NN0  /\  k  <_  s )  ->  (
( s  e.  NN0  /\  s  <  K )  ->  ( K  e. 
NN0  ->  -.  K  =  k ) ) )
157131, 156sylbi 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  e.  ( 0 ... s )  ->  (
( s  e.  NN0  /\  s  <  K )  ->  ( K  e. 
NN0  ->  -.  K  =  k ) ) )
158157com13 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( K  e.  NN0  ->  ( ( s  e.  NN0  /\  s  <  K )  -> 
( k  e.  ( 0 ... s )  ->  -.  K  =  k ) ) )
159158adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  -> 
( ( s  e. 
NN0  /\  s  <  K )  ->  ( k  e.  ( 0 ... s
)  ->  -.  K  =  k ) ) )
160159imp 430 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  ->  ( k  e.  ( 0 ... s
)  ->  -.  K  =  k ) )
161160adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( k  e.  ( 0 ... s )  ->  -.  K  =  k ) )
1621613ad2ant1 1026 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  ->  ( k  e.  ( 0 ... s
)  ->  -.  K  =  k ) )
163162imp 430 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  /\  k  e.  ( 0 ... s
) )  ->  -.  K  =  k )
164163iffalsed 3920 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  /\  k  e.  ( 0 ... s
) )  ->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )  =  ( 0g `  R
) )
165164mpteq2dva 4507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  ->  ( k  e.  ( 0 ... s
)  |->  if ( K  =  k ,  ( i ( (coe1 `  O
) `  k )
j ) ,  ( 0g `  R ) ) )  =  ( k  e.  ( 0 ... s )  |->  ( 0g `  R ) ) )
166165oveq2d 6318 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  ->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... s ) 
|->  ( 0g `  R
) ) ) )
167 ringmnd 17777 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
1681673ad2ant2 1027 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  R  e.  Mnd )
169 ovex 6330 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0 ... s )  e. 
_V
17043gsumz 16609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  Mnd  /\  ( 0 ... s
)  e.  _V )  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( 0g `  R
) ) )  =  ( 0g `  R
) )
171168, 169, 170sylancl 666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( 0g `  R
) ) )  =  ( 0g `  R
) )
172171ad3antlr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( 0g `  R
) ) )  =  ( 0g `  R
) )
1731723ad2ant1 1026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  ->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  ( 0g `  R ) ) )  =  ( 0g `  R ) )
174166, 173eqtrd 2463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  /\  i  e.  N  /\  j  e.  N
)  ->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) )  =  ( 0g
`  R ) )
175174mpt2eq3dva 6366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  ( 0g `  R ) ) )
176 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( (coe1 `  O ) `  K )  =  ( 0g `  A ) )
177130, 175, 1763eqtr4d 2473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( K  e. 
NN0  /\  ( N  e.  Fin  /\  R  e. 
Ring  /\  O  e.  L
) )  /\  (
s  e.  NN0  /\  s  <  K ) )  /\  ( (coe1 `  O
) `  K )  =  ( 0g `  A ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) )
178177ex 435 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  ( s  e.  NN0  /\  s  <  K ) )  ->  ( (
(coe1 `  O ) `  K )  =  ( 0g `  A )  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) )
179178expr 618 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  s  e.  NN0 )  -> 
( s  <  K  ->  ( ( (coe1 `  O
) `  K )  =  ( 0g `  A )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) ) )
180179a2d 29 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L ) )  /\  s  e.  NN0 )  -> 
( ( s  < 
K  ->  ( (coe1 `  O ) `  K
)  =  ( 0g
`  A ) )  ->  ( s  < 
K  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) ) )
181180exp31 607 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( ( s  <  K  ->  ( (coe1 `  O ) `  K )  =  ( 0g `  A ) )  ->  ( s  <  K  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) ) ) ) )
182181com14 91 . . . . . . . . . . . 12  |-  ( ( s  <  K  -> 
( (coe1 `  O ) `  K )  =  ( 0g `  A ) )  ->  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( K  e.  NN0  ->  ( s  <  K  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) ) ) ) )
183126, 182syl 17 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  A. x  e.  NN0  (
s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( K  e.  NN0  ->  ( s  <  K  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) ) ) ) )
184183ex 435 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( K  e.  NN0  ->  ( s  <  K  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) ) ) ) ) )
185184com25 94 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( K  e.  NN0  ->  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( A. x  e.  NN0  ( s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( s  <  K  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) ) ) ) ) )
186185pm2.43i 49 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  ->  (
s  e.  NN0  ->  ( A. x  e.  NN0  ( s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( s  <  K  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) ) ) ) )
187186impcom 431 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
s  e.  NN0  ->  ( A. x  e.  NN0  ( s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) )  ->  ( s  <  K  ->  ( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) ) ) )  =  ( (coe1 `  O ) `  K
) ) ) ) )
188187imp31 433 . . . . . 6  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
s  <  K  ->  ( i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) )
189188com12 32 . . . . 5  |-  ( s  <  K  ->  (
( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) )
190168ad3antrrr 734 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  R  e.  Mnd )
191190adantl 467 . . . . . . . . . 10  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  ->  R  e.  Mnd )
1921913ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  R  e.  Mnd )
193169a1i 11 . . . . . . . . 9  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  ( 0 ... s
)  e.  _V )
194 lenlt 9713 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  RR  /\  s  e.  RR )  ->  ( K  <_  s  <->  -.  s  <  K ) )
195136, 134, 194syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN0  /\  s  e.  NN0 )  -> 
( K  <_  s  <->  -.  s  <  K ) )
196 simpll 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  s  e.  NN0 )  /\  K  <_  s )  ->  K  e.  NN0 )
197 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  s  e.  NN0 )  /\  K  <_  s )  ->  s  e.  NN0 )
198 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  s  e.  NN0 )  /\  K  <_  s )  ->  K  <_  s
)
199 elfz2nn0 11886 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 0 ... s )  <->  ( K  e.  NN0  /\  s  e. 
NN0  /\  K  <_  s ) )
200196, 197, 198, 199syl3anbrc 1189 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  s  e.  NN0 )  /\  K  <_  s )  ->  K  e.  ( 0 ... s ) )
201200ex 435 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN0  /\  s  e.  NN0 )  -> 
( K  <_  s  ->  K  e.  ( 0 ... s ) ) )
202195, 201sylbird 238 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  s  e.  NN0 )  -> 
( -.  s  < 
K  ->  K  e.  ( 0 ... s
) ) )
203202adantll 718 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  ->  ( -.  s  <  K  ->  K  e.  ( 0 ... s ) ) )
204203adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  ( -.  s  <  K  ->  K  e.  ( 0 ... s ) ) )
205204impcom 431 . . . . . . . . . 10  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  ->  K  e.  ( 0 ... s ) )
2062053ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  K  e.  ( 0 ... s ) )
207 eqcom 2431 . . . . . . . . . . 11  |-  ( K  =  k  <->  k  =  K )
208 ifbi 3930 . . . . . . . . . . 11  |-  ( ( K  =  k  <->  k  =  K )  ->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )  =  if ( k  =  K ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) )
209207, 208ax-mp 5 . . . . . . . . . 10  |-  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) )  =  if ( k  =  K ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) )
210209mpteq2i 4504 . . . . . . . . 9  |-  ( k  e.  ( 0 ... s )  |->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k
) j ) ,  ( 0g `  R
) ) )  =  ( k  e.  ( 0 ... s ) 
|->  if ( k  =  K ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) )
211 simpl2 1009 . . . . . . . . . . . 12  |-  ( ( ( ( -.  s  <  K  /\  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  i  e.  N
)
212 simpl3 1010 . . . . . . . . . . . 12  |-  ( ( ( ( -.  s  <  K  /\  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  j  e.  N
)
21327adantl 467 . . . . . . . . . . . . . 14  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  ->  O  e.  L )
2142133ad2ant1 1026 . . . . . . . . . . . . 13  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  O  e.  L )
215214, 30sylan 473 . . . . . . . . . . . 12  |-  ( ( ( ( -.  s  <  K  /\  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  ( (coe1 `  O
) `  k )  e.  ( Base `  A
) )
2161, 22, 23, 211, 212, 215matecld 19438 . . . . . . . . . . 11  |-  ( ( ( ( -.  s  <  K  /\  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  NN0 )  ->  ( i ( (coe1 `  O ) `  k ) j )  e.  ( Base `  R
) )
21791, 216sylan2 476 . . . . . . . . . 10  |-  ( ( ( ( -.  s  <  K  /\  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  /\  k  e.  (
0 ... s ) )  ->  ( i ( (coe1 `  O ) `  k ) j )  e.  ( Base `  R
) )
218217ralrimiva 2839 . . . . . . . . 9  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  A. k  e.  ( 0 ... s ) ( i ( (coe1 `  O ) `  k
) j )  e.  ( Base `  R
) )
21943, 192, 193, 206, 210, 218gsummpt1n0 17585 . . . . . . . 8  |-  ( ( ( -.  s  < 
K  /\  ( (
( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  s  e. 
NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  /\  i  e.  N  /\  j  e.  N )  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) )  =  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) )
220219mpt2eq3dva 6366 . . . . . . 7  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) ) )
221 csbov 6337 . . . . . . . . . . . . . . 15  |-  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j )  =  ( i [_ K  / 
k ]_ ( (coe1 `  O
) `  k )
j )
222 csbfv 5915 . . . . . . . . . . . . . . . . 17  |-  [_ K  /  k ]_ (
(coe1 `  O ) `  k )  =  ( (coe1 `  O ) `  K )
223222a1i 11 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN0  ->  [_ K  /  k ]_ (
(coe1 `  O ) `  k )  =  ( (coe1 `  O ) `  K ) )
224223oveqd 6319 . . . . . . . . . . . . . . 15  |-  ( K  e.  NN0  ->  ( i
[_ K  /  k ]_ ( (coe1 `  O ) `  k ) j )  =  ( i ( (coe1 `  O ) `  K ) j ) )
225221, 224syl5eq 2475 . . . . . . . . . . . . . 14  |-  ( K  e.  NN0  ->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j )  =  ( i ( (coe1 `  O
) `  K )
j ) )
226225ad2antlr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  ->  [_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j )  =  ( i ( (coe1 `  O ) `  K
) j ) )
227226mpt2eq3dv 6368 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
( i  e.  N ,  j  e.  N  |-> 
[_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) )  =  ( i  e.  N ,  j  e.  N  |->  ( i ( (coe1 `  O ) `  K ) j ) ) )
228 oveq12 6311 . . . . . . . . . . . . 13  |-  ( ( i  =  a  /\  j  =  b )  ->  ( i ( (coe1 `  O ) `  K
) j )  =  ( a ( (coe1 `  O ) `  K
) b ) )
229228adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  (
a  e.  N  /\  b  e.  N )
)  /\  ( i  =  a  /\  j  =  b ) )  ->  ( i ( (coe1 `  O ) `  K ) j )  =  ( a ( (coe1 `  O ) `  K ) b ) )
230 simprl 762 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
a  e.  N )
231 simprr 764 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
b  e.  N )
232 ovex 6330 . . . . . . . . . . . . 13  |-  ( a ( (coe1 `  O ) `  K ) b )  e.  _V
233232a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
( a ( (coe1 `  O ) `  K
) b )  e. 
_V )
234227, 229, 230, 231, 233ovmpt2d 6435 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
( a ( i  e.  N ,  j  e.  N  |->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) ) b )  =  ( a ( (coe1 `  O ) `  K ) b ) )
235234ralrimivva 2846 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  A. a  e.  N  A. b  e.  N  ( a
( i  e.  N ,  j  e.  N  |-> 
[_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) ) b )  =  ( a ( (coe1 `  O
) `  K )
b ) )
236 simpl1 1008 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  N  e.  Fin )
237222oveqi 6315 . . . . . . . . . . . . . 14  |-  ( i
[_ K  /  k ]_ ( (coe1 `  O ) `  k ) j )  =  ( i ( (coe1 `  O ) `  K ) j )
238221, 237eqtri 2451 . . . . . . . . . . . . 13  |-  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j )  =  ( i ( (coe1 `  O
) `  K )
j )
239 simp2 1006 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  i  e.  N )
240 simp3 1007 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  j  e.  N )
24129, 3, 2, 23coe1fvalcl 18793 . . . . . . . . . . . . . . . 16  |-  ( ( O  e.  L  /\  K  e.  NN0 )  -> 
( (coe1 `  O ) `  K )  e.  (
Base `  A )
)
2422413ad2antl3 1169 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
(coe1 `  O ) `  K )  e.  (
Base `  A )
)
2432423ad2ant1 1026 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  (
(coe1 `  O ) `  K )  e.  (
Base `  A )
)
2441, 22, 23, 239, 240, 243matecld 19438 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  (
i ( (coe1 `  O
) `  K )
j )  e.  (
Base `  R )
)
245238, 244syl5eqel 2514 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  O  e.  L
)  /\  K  e.  NN0 )  /\  i  e.  N  /\  j  e.  N )  ->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j )  e.  (
Base `  R )
)
2461, 22, 23, 236, 18, 245matbas2d 19435 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
i  e.  N , 
j  e.  N  |->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) )  e.  ( Base `  A
) )
2471, 23eqmat 19436 . . . . . . . . . . 11  |-  ( ( ( i  e.  N ,  j  e.  N  |-> 
[_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) )  e.  ( Base `  A
)  /\  ( (coe1 `  O ) `  K
)  e.  ( Base `  A ) )  -> 
( ( i  e.  N ,  j  e.  N  |->  [_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) )  =  ( (coe1 `  O
) `  K )  <->  A. a  e.  N  A. b  e.  N  (
a ( i  e.  N ,  j  e.  N  |->  [_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) ) b )  =  ( a ( (coe1 `  O
) `  K )
b ) ) )
248246, 242, 247syl2anc 665 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
( i  e.  N ,  j  e.  N  |-> 
[_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) )  =  ( (coe1 `  O
) `  K )  <->  A. a  e.  N  A. b  e.  N  (
a ( i  e.  N ,  j  e.  N  |->  [_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) ) b )  =  ( a ( (coe1 `  O
) `  K )
b ) ) )
249235, 248mpbird 235 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
i  e.  N , 
j  e.  N  |->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) )  =  ( (coe1 `  O ) `  K ) )
250249ad2antrr 730 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  [_ K  /  k ]_ (
i ( (coe1 `  O
) `  k )
j ) )  =  ( (coe1 `  O ) `  K ) )
251250adantl 467 . . . . . . 7  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  -> 
( i  e.  N ,  j  e.  N  |-> 
[_ K  /  k ]_ ( i ( (coe1 `  O ) `  k
) j ) )  =  ( (coe1 `  O
) `  K )
)
252220, 251eqtrd 2463 . . . . . 6  |-  ( ( -.  s  <  K  /\  ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )  -> 
( i  e.  N ,  j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) )
253252ex 435 . . . . 5  |-  ( -.  s  <  K  -> 
( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) ) )
254189, 253pm2.61i 167 . . . 4  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  if ( K  =  k ,  ( i ( (coe1 `  O ) `  k ) j ) ,  ( 0g `  R ) ) ) ) )  =  ( (coe1 `  O ) `  K ) )
25599, 121, 2543eqtrd 2467 . . 3  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  /\  s  e.  NN0 )  /\  A. x  e.  NN0  ( s  <  x  ->  (
(coe1 `  O ) `  x )  =  ( 0g `  A ) ) )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K ) )  =  ( (coe1 `  O
) `  K )
)
256 eqid 2422 . . . . . 6  |-  ( 0g
`  A )  =  ( 0g `  A
)
25729, 3, 2, 256coe1sfi 18794 . . . . 5  |-  ( O  e.  L  ->  (coe1 `  O ) finSupp  ( 0g `  A ) )
25826, 257syl 17 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (coe1 `  O ) finSupp  ( 0g `  A ) )
25929, 3, 2, 256, 23coe1fsupp 18795 . . . . . 6  |-  ( O  e.  L  ->  (coe1 `  O )  e.  {
x  e.  ( (
Base `  A )  ^m  NN0 )  |  x finSupp 
( 0g `  A
) } )
260 elrabi 3226 . . . . . 6  |-  ( (coe1 `  O )  e.  {
x  e.  ( (
Base `  A )  ^m  NN0 )  |  x finSupp 
( 0g `  A
) }  ->  (coe1 `  O )  e.  ( ( Base `  A
)  ^m  NN0 ) )
26126, 259, 2603syl 18 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (coe1 `  O )  e.  ( ( Base `  A
)  ^m  NN0 ) )
262 fvex 5888 . . . . 5  |-  ( 0g
`  A )  e. 
_V
263 fsuppmapnn0ub 12207 . . . . 5  |-  ( ( (coe1 `  O )  e.  ( ( Base `  A
)  ^m  NN0 )  /\  ( 0g `  A )  e.  _V )  -> 
( (coe1 `  O ) finSupp  ( 0g `  A )  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )
264261, 262, 263sylancl 666 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
(coe1 `  O ) finSupp  ( 0g `  A )  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  ( (coe1 `  O ) `  x )  =  ( 0g `  A ) ) ) )
265258, 264mpd 15 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  ( (coe1 `  O ) `  x
)  =  ( 0g
`  A ) ) )
266255, 265r19.29a 2970 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
i  e.  N , 
j  e.  N  |->  ( (coe1 `  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) ) ) `
 K ) )  =  ( (coe1 `  O
) `  K )
)
2679, 266eqtrd 2463 1  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  O  e.  L )  /\  K  e.  NN0 )  ->  (
( I `  O
) decompPMat  K )  =  ( (coe1 `  O ) `  K ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   {crab 2779   _Vcvv 3081   [_csb 3395   ifcif 3909   class class class wbr 4420    |-> cmpt 4479   ` cfv 5598  (class class class)co 6302    |-> cmpt2 6304    ^m cmap 7477   Fincfn 7574   finSupp cfsupp 7886   RRcr 9539   0cc0 9540    < clt 9676    <_ cle 9677   NN0cn0 10870   ...cfz 11785   Basecbs 15109  Scalarcsca 15181   .scvsca 15182   0gc0g 15326    gsumg cgsu 15327   Mndcmnd 16523  .gcmg 16660  CMndccmn 17418  mulGrpcmgp 17711   Ringcrg 17768   LModclmod 18079  var1cv1 18757  Poly1cpl1 18758  coe1cco1 18759   Mat cmat 19419   decompPMat cdecpmat 19773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-ot 4005  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-of 6542  df-ofr 6543  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-sup 7959  df-oi 8028  df-card 8375  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-7 10674  df-8 10675  df-9 10676  df-10 10677  df-n0 10871  df-z 10939  df-dec 11053  df-uz 11161  df-fz 11786  df-fzo 11917  df-seq 12214  df-hash 12516  df-struct 15111  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-mulr 15192  df-sca 15194  df-vsca 15195  df-ip 15196  df-tset 15197  df-ple 15198  df-ds 15200  df-hom 15202  df-cco 15203  df-0g 15328  df-gsum 15329  df-prds 15334  df-pws 15336  df-mre 15480  df-mrc 15481  df-acs 15483  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-mhm 16570  df-submnd 16571  df-grp 16661  df-minusg 16662  df-sbg 16663  df-mulg 16664  df-subg 16802  df-ghm 16869  df-cntz 16959  df-cmn 17420  df-abl 17421  df-mgp 17712  df-ur 17724  df-ring 17770  df-subrg 17994  df-lmod 18081  df-lss 18144  df-sra 18383  df-rgmod 18384  df-psr 18568  df-mvr 18569  df-mpl 18570  df-opsr 18572  df-psr1 18761  df-vr1 18762  df-ply1 18763  df-coe1 18764  df-dsmm 19282  df-frlm 19297  df-mat 19420  df-decpmat 19774
This theorem is referenced by:  mp2pm2mplem5  19821  mp2pm2mp  19822
  Copyright terms: Public domain W3C validator