Step | Hyp | Ref
| Expression |
1 | | simpll1 1093 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋)) |
2 | | simprl 790 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) → 𝑧 ∈ 𝐽) |
3 | | simprr 792 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) → 𝐴 ∈ 𝑧) |
4 | | metdscn.j |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
5 | 4 | mopni2 22108 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧) |
6 | 1, 2, 3, 5 | syl3anc 1318 |
. . . . . 6
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧) |
7 | | simprr 792 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧) |
8 | | ssrin 3800 |
. . . . . . . 8
⊢ ((𝐴(ball‘𝐷)𝑟) ⊆ 𝑧 → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧 ∩ 𝑆)) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧 ∩ 𝑆)) |
10 | | rpgt0 11720 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
11 | | 0re 9919 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
12 | | rpre 11715 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
13 | | ltnle 9996 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑟
∈ ℝ) → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0)) |
14 | 11, 12, 13 | sylancr 694 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ (0 < 𝑟 ↔
¬ 𝑟 ≤
0)) |
15 | 10, 14 | mpbid 221 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ ¬ 𝑟 ≤
0) |
16 | 15 | ad2antrl 760 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ¬ 𝑟 ≤ 0) |
17 | | simpllr 795 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐹‘𝐴) = 0) |
18 | 17 | breq2d 4595 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹‘𝐴) ↔ 𝑟 ≤ 0)) |
19 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋)) |
20 | | simpl2 1058 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝑆 ⊆ 𝑋) |
21 | 20 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑆 ⊆ 𝑋) |
22 | | simpl3 1059 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝐴 ∈ 𝑋) |
23 | 22 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐴 ∈ 𝑋) |
24 | | rpxr 11716 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
25 | 24 | ad2antrl 760 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑟 ∈ ℝ*) |
26 | | metdscn.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, <
)) |
27 | 26 | metdsge 22460 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑟 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅)) |
28 | 19, 21, 23, 25, 27 | syl31anc 1321 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅)) |
29 | 18, 28 | bitr3d 269 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅)) |
30 | | incom 3767 |
. . . . . . . . . . 11
⊢ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) |
31 | 30 | eqeq1i 2615 |
. . . . . . . . . 10
⊢ ((𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅ ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅) |
32 | 29, 31 | syl6bb 275 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅)) |
33 | 32 | necon3bbid 2819 |
. . . . . . . 8
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (¬ 𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅)) |
34 | 16, 33 | mpbid 221 |
. . . . . . 7
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) |
35 | | ssn0 3928 |
. . . . . . 7
⊢ ((((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧 ∩ 𝑆) ∧ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) → (𝑧 ∩ 𝑆) ≠ ∅) |
36 | 9, 34, 35 | syl2anc 691 |
. . . . . 6
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑧 ∩ 𝑆) ≠ ∅) |
37 | 6, 36 | rexlimddv 3017 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ (𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧)) → (𝑧 ∩ 𝑆) ≠ ∅) |
38 | 37 | expr 641 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) ∧ 𝑧 ∈ 𝐽) → (𝐴 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅)) |
39 | 38 | ralrimiva 2949 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅)) |
40 | 4 | mopntopon 22054 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
41 | 40 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
42 | 41 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝐽 ∈ (TopOn‘𝑋)) |
43 | | topontop 20541 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
44 | 42, 43 | syl 17 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝐽 ∈ Top) |
45 | | toponuni 20542 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
46 | 42, 45 | syl 17 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝑋 = ∪ 𝐽) |
47 | 20, 46 | sseqtrd 3604 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝑆 ⊆ ∪ 𝐽) |
48 | 22, 46 | eleqtrd 2690 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝐴 ∈ ∪ 𝐽) |
49 | | eqid 2610 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
50 | 49 | elcls 20687 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ 𝐴 ∈ ∪ 𝐽)
→ (𝐴 ∈
((cls‘𝐽)‘𝑆) ↔ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
51 | 44, 47, 48, 50 | syl3anc 1318 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 → (𝑧 ∩ 𝑆) ≠ ∅))) |
52 | 39, 51 | mpbird 246 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) = 0) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
53 | | incom 3767 |
. . . . . . 7
⊢ ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹‘𝐴))) |
54 | 26 | metdsf 22459 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
55 | 54 | ffvelrnda 6267 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ (0[,]+∞)) |
56 | 55 | 3impa 1251 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ (0[,]+∞)) |
57 | | elxrge0 12152 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝐴))) |
58 | 57 | simplbi 475 |
. . . . . . . . . 10
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈
ℝ*) |
59 | 56, 58 | syl 17 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈
ℝ*) |
60 | | xrleid 11859 |
. . . . . . . . 9
⊢ ((𝐹‘𝐴) ∈ ℝ* → (𝐹‘𝐴) ≤ (𝐹‘𝐴)) |
61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ≤ (𝐹‘𝐴)) |
62 | 26 | metdsge 22460 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ (𝐹‘𝐴) ∈ ℝ*) → ((𝐹‘𝐴) ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹‘𝐴))) = ∅)) |
63 | 59, 62 | mpdan 699 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹‘𝐴))) = ∅)) |
64 | 61, 63 | mpbid 221 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹‘𝐴))) = ∅) |
65 | 53, 64 | syl5eq 2656 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) = ∅) |
66 | 65 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) = ∅) |
67 | 41 | ad2antrr 758 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
68 | 67, 43 | syl 17 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐽 ∈ Top) |
69 | | simpll2 1094 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝑆 ⊆ 𝑋) |
70 | 67, 45 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝑋 = ∪ 𝐽) |
71 | 69, 70 | sseqtrd 3604 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝑆 ⊆ ∪ 𝐽) |
72 | | simplr 788 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆)) |
73 | | simpll1 1093 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) |
74 | | simpll3 1095 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐴 ∈ 𝑋) |
75 | 59 | ad2antrr 758 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → (𝐹‘𝐴) ∈
ℝ*) |
76 | 4 | blopn 22115 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ (𝐹‘𝐴) ∈ ℝ*) → (𝐴(ball‘𝐷)(𝐹‘𝐴)) ∈ 𝐽) |
77 | 73, 74, 75, 76 | syl3anc 1318 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → (𝐴(ball‘𝐷)(𝐹‘𝐴)) ∈ 𝐽) |
78 | | simpr 476 |
. . . . . . . . 9
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 0 < (𝐹‘𝐴)) |
79 | | xblcntr 22026 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 <
(𝐹‘𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹‘𝐴))) |
80 | 73, 74, 75, 78, 79 | syl112anc 1322 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹‘𝐴))) |
81 | 49 | clsndisj 20689 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽
∧ 𝐴 ∈
((cls‘𝐽)‘𝑆)) ∧ ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹‘𝐴)))) → ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) ≠ ∅) |
82 | 68, 71, 72, 77, 80, 81 | syl32anc 1326 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹‘𝐴)) → ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) ≠ ∅) |
83 | 82 | ex 449 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹‘𝐴) → ((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) ≠ ∅)) |
84 | 83 | necon2bd 2798 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((𝐴(ball‘𝐷)(𝐹‘𝐴)) ∩ 𝑆) = ∅ → ¬ 0 < (𝐹‘𝐴))) |
85 | 66, 84 | mpd 15 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ 0 < (𝐹‘𝐴)) |
86 | 57 | simprbi 479 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
87 | 56, 86 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝐹‘𝐴)) |
88 | | 0xr 9965 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
89 | | xrleloe 11853 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ (𝐹‘𝐴) ∈ ℝ*) → (0 ≤
(𝐹‘𝐴) ↔ (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴)))) |
90 | 88, 59, 89 | sylancr 694 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (0 ≤ (𝐹‘𝐴) ↔ (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴)))) |
91 | 87, 90 | mpbid 221 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴))) |
92 | 91 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴))) |
93 | 92 | ord 391 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 0 < (𝐹‘𝐴) → 0 = (𝐹‘𝐴))) |
94 | 85, 93 | mpd 15 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 0 = (𝐹‘𝐴)) |
95 | 94 | eqcomd 2616 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹‘𝐴) = 0) |
96 | 52, 95 | impbida 873 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) |