MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Visualization version   GIF version

Theorem metdseq0 22465
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metdseq0 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metdseq0
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1093 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
2 simprl 790 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝑧𝐽)
3 simprr 792 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → 𝐴𝑧)
4 metdscn.j . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
54mopni2 22108 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝐴𝑧) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
61, 2, 3, 5syl3anc 1318 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → ∃𝑟 ∈ ℝ+ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
7 simprr 792 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)
8 ssrin 3800 . . . . . . . 8 ((𝐴(ball‘𝐷)𝑟) ⊆ 𝑧 → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆))
97, 8syl 17 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆))
10 rpgt0 11720 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → 0 < 𝑟)
11 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
12 rpre 11715 . . . . . . . . . . 11 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
13 ltnle 9996 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
1411, 12, 13sylancr 694 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (0 < 𝑟 ↔ ¬ 𝑟 ≤ 0))
1510, 14mpbid 221 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0)
1615ad2antrl 760 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ¬ 𝑟 ≤ 0)
17 simpllr 795 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝐹𝐴) = 0)
1817breq2d 4595 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ 𝑟 ≤ 0))
191adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
20 simpl2 1058 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆𝑋)
2120ad2antrr 758 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑆𝑋)
22 simpl3 1059 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴𝑋)
2322ad2antrr 758 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝐴𝑋)
24 rpxr 11716 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antrl 760 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → 𝑟 ∈ ℝ*)
26 metdscn.f . . . . . . . . . . . . 13 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2726metdsge 22460 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑟 ∈ ℝ*) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2819, 21, 23, 25, 27syl31anc 1321 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
2918, 28bitr3d 269 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅))
30 incom 3767 . . . . . . . . . . 11 (𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆)
3130eqeq1i 2615 . . . . . . . . . 10 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑟)) = ∅ ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅)
3229, 31syl6bb 275 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) = ∅))
3332necon3bbid 2819 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (¬ 𝑟 ≤ 0 ↔ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅))
3416, 33mpbid 221 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅)
35 ssn0 3928 . . . . . . 7 ((((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ⊆ (𝑧𝑆) ∧ ((𝐴(ball‘𝐷)𝑟) ∩ 𝑆) ≠ ∅) → (𝑧𝑆) ≠ ∅)
369, 34, 35syl2anc 691 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝐴(ball‘𝐷)𝑟) ⊆ 𝑧)) → (𝑧𝑆) ≠ ∅)
376, 36rexlimddv 3017 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ (𝑧𝐽𝐴𝑧)) → (𝑧𝑆) ≠ ∅)
3837expr 641 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) ∧ 𝑧𝐽) → (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
3938ralrimiva 2949 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅))
404mopntopon 22054 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
41403ad2ant1 1075 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4241adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ (TopOn‘𝑋))
43 topontop 20541 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4442, 43syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐽 ∈ Top)
45 toponuni 20542 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
4642, 45syl 17 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑋 = 𝐽)
4720, 46sseqtrd 3604 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝑆 𝐽)
4822, 46eleqtrd 2690 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 𝐽)
49 eqid 2610 . . . . 5 𝐽 = 𝐽
5049elcls 20687 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5144, 47, 48, 50syl3anc 1318 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑧𝐽 (𝐴𝑧 → (𝑧𝑆) ≠ ∅)))
5239, 51mpbird 246 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) = 0) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
53 incom 3767 . . . . . . 7 ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴)))
5426metdsf 22459 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
5554ffvelrnda 6267 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
56553impa 1251 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ (0[,]+∞))
57 elxrge0 12152 . . . . . . . . . . 11 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
5857simplbi 475 . . . . . . . . . 10 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
5956, 58syl 17 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ∈ ℝ*)
60 xrleid 11859 . . . . . . . . 9 ((𝐹𝐴) ∈ ℝ* → (𝐹𝐴) ≤ (𝐹𝐴))
6159, 60syl 17 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝐹𝐴) ≤ (𝐹𝐴))
6226metdsge 22460 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ (𝐹𝐴) ∈ ℝ*) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6359, 62mpdan 699 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅))
6461, 63mpbid 221 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (𝑆 ∩ (𝐴(ball‘𝐷)(𝐹𝐴))) = ∅)
6553, 64syl5eq 2656 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6665adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅)
6741ad2antrr 758 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
6867, 43syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐽 ∈ Top)
69 simpll2 1094 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆𝑋)
7067, 45syl 17 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑋 = 𝐽)
7169, 70sseqtrd 3604 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝑆 𝐽)
72 simplr 788 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
73 simpll1 1093 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
74 simpll3 1095 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴𝑋)
7559ad2antrr 758 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐹𝐴) ∈ ℝ*)
764blopn 22115 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝐴) ∈ ℝ*) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
7773, 74, 75, 76syl3anc 1318 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → (𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽)
78 simpr 476 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 0 < (𝐹𝐴))
79 xblcntr 22026 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋 ∧ ((𝐹𝐴) ∈ ℝ* ∧ 0 < (𝐹𝐴))) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
8073, 74, 75, 78, 79syl112anc 1322 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → 𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))
8149clsndisj 20689 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆 𝐽𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ ((𝐴(ball‘𝐷)(𝐹𝐴)) ∈ 𝐽𝐴 ∈ (𝐴(ball‘𝐷)(𝐹𝐴)))) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
8268, 71, 72, 77, 80, 81syl32anc 1326 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 0 < (𝐹𝐴)) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅)
8382ex 449 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) → ((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) ≠ ∅))
8483necon2bd 2798 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((𝐴(ball‘𝐷)(𝐹𝐴)) ∩ 𝑆) = ∅ → ¬ 0 < (𝐹𝐴)))
8566, 84mpd 15 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ 0 < (𝐹𝐴))
8657simprbi 479 . . . . . . . 8 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
8756, 86syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → 0 ≤ (𝐹𝐴))
88 0xr 9965 . . . . . . . 8 0 ∈ ℝ*
89 xrleloe 11853 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
9088, 59, 89sylancr 694 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 ≤ (𝐹𝐴) ↔ (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴))))
9187, 90mpbid 221 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9291adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (0 < (𝐹𝐴) ∨ 0 = (𝐹𝐴)))
9392ord 391 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 0 < (𝐹𝐴) → 0 = (𝐹𝐴)))
9485, 93mpd 15 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 0 = (𝐹𝐴))
9594eqcomd 2616 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹𝐴) = 0)
9652, 95impbida 873 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) → ((𝐹𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  +crp 11708  [,]cicc 12049  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  TopOnctopon 20518  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by:  metnrmlem1a  22469  lebnumlem1  22568
  Copyright terms: Public domain W3C validator