MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdseq0 Structured version   Unicode version

Theorem metdseq0 21484
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
metdscn.j  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
metdseq0  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Distinct variable groups:    x, y, A    x, D, y    y, J    x, S, y    x, X, y
Allowed substitution hints:    F( x, y)    J( x)

Proof of Theorem metdseq0
Dummy variables  r 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1035 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  D  e.  ( *Met `  X ) )
2 simprl 756 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  z  e.  J )
3 simprr 757 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  A  e.  z )
4 metdscn.j . . . . . . . 8  |-  J  =  ( MetOpen `  D )
54mopni2 21122 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  J  /\  A  e.  z
)  ->  E. r  e.  RR+  ( A (
ball `  D )
r )  C_  z
)
61, 2, 3, 5syl3anc 1228 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  E. r  e.  RR+  ( A (
ball `  D )
r )  C_  z
)
7 simprr 757 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( A ( ball `  D ) r ) 
C_  z )
8 ssrin 3719 . . . . . . . 8  |-  ( ( A ( ball `  D
) r )  C_  z  ->  ( ( A ( ball `  D
) r )  i^i 
S )  C_  (
z  i^i  S )
)
97, 8syl 16 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S ) )
10 rpgt0 11256 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  0  < 
r )
11 0re 9613 . . . . . . . . . . 11  |-  0  e.  RR
12 rpre 11251 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e.  RR )
13 ltnle 9681 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  r  e.  RR )  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1411, 12, 13sylancr 663 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( 0  <  r  <->  -.  r  <_  0 ) )
1510, 14mpbid 210 . . . . . . . . 9  |-  ( r  e.  RR+  ->  -.  r  <_  0 )
1615ad2antrl 727 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  -.  r  <_  0 )
17 simpllr 760 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( F `  A
)  =  0 )
1817breq2d 4468 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  r  <_  0 ) )
191adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  D  e.  ( *Met `  X ) )
20 simpl2 1000 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  X
)
2120ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  S  C_  X )
22 simpl3 1001 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  X )
2322ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  ->  A  e.  X )
24 rpxr 11252 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e. 
RR* )
2524ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
r  e.  RR* )
26 metdscn.f . . . . . . . . . . . . 13  |-  F  =  ( x  e.  X  |->  sup ( ran  (
y  e.  S  |->  ( x D y ) ) ,  RR* ,  `'  <  ) )
2726metdsge 21479 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  r  e.  RR* )  ->  ( r  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2819, 21, 23, 25, 27syl31anc 1231 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  ( F `  A )  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
2918, 28bitr3d 255 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( S  i^i  ( A ( ball `  D
) r ) )  =  (/) ) )
30 incom 3687 . . . . . . . . . . 11  |-  ( S  i^i  ( A (
ball `  D )
r ) )  =  ( ( A (
ball `  D )
r )  i^i  S
)
3130eqeq1i 2464 . . . . . . . . . 10  |-  ( ( S  i^i  ( A ( ball `  D
) r ) )  =  (/)  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =  (/) )
3229, 31syl6bb 261 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( r  <_  0  <->  ( ( A ( ball `  D ) r )  i^i  S )  =  (/) ) )
3332necon3bbid 2704 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( -.  r  <_ 
0  <->  ( ( A ( ball `  D
) r )  i^i 
S )  =/=  (/) ) )
3416, 33mpbid 210 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( ( A (
ball `  D )
r )  i^i  S
)  =/=  (/) )
35 ssn0 3827 . . . . . . 7  |-  ( ( ( ( A (
ball `  D )
r )  i^i  S
)  C_  ( z  i^i  S )  /\  (
( A ( ball `  D ) r )  i^i  S )  =/=  (/) )  ->  ( z  i^i  S )  =/=  (/) )
369, 34, 35syl2anc 661 . . . . . 6  |-  ( ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  /\  (
r  e.  RR+  /\  ( A ( ball `  D
) r )  C_  z ) )  -> 
( z  i^i  S
)  =/=  (/) )
376, 36rexlimddv 2953 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  ( z  e.  J  /\  A  e.  z
) )  ->  (
z  i^i  S )  =/=  (/) )
3837expr 615 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  ( F `  A )  =  0 )  /\  z  e.  J )  ->  ( A  e.  z  ->  ( z  i^i 
S )  =/=  (/) ) )
3938ralrimiva 2871 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A. z  e.  J  ( A  e.  z  ->  ( z  i^i  S )  =/=  (/) ) )
404mopntopon 21068 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
41403ad2ant1 1017 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  J  e.  (TopOn `  X ) )
4241adantr 465 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  (TopOn `  X ) )
43 topontop 19554 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4442, 43syl 16 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  J  e.  Top )
45 toponuni 19555 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
4642, 45syl 16 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  X  =  U. J )
4720, 46sseqtrd 3535 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  S  C_  U. J
)
4822, 46eleqtrd 2547 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  U. J )
49 eqid 2457 . . . . 5  |-  U. J  =  U. J
5049elcls 19701 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  U. J )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5144, 47, 48, 50syl3anc 1228 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  ( A  e.  ( ( cls `  J
) `  S )  <->  A. z  e.  J  ( A  e.  z  -> 
( z  i^i  S
)  =/=  (/) ) ) )
5239, 51mpbird 232 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  =  0 )  ->  A  e.  ( ( cls `  J
) `  S )
)
53 incom 3687 . . . . . . 7  |-  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )
5426metdsf 21478 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
5554ffvelrnda 6032 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X
)  /\  A  e.  X )  ->  ( F `  A )  e.  ( 0 [,] +oo ) )
56553impa 1191 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  ( 0 [,] +oo )
)
57 elxrge0 11654 . . . . . . . . . . 11  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
5857simplbi 460 . . . . . . . . . 10  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
5956, 58syl 16 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  e.  RR* )
60 xrleid 11381 . . . . . . . . 9  |-  ( ( F `  A )  e.  RR*  ->  ( F `
 A )  <_ 
( F `  A
) )
6159, 60syl 16 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( F `  A )  <_  ( F `  A )
)
6226metdsge 21479 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  ( F `  A )  e.  RR* )  ->  ( ( F `
 A )  <_ 
( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6359, 62mpdan 668 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  <_  ( F `  A
)  <->  ( S  i^i  ( A ( ball `  D
) ( F `  A ) ) )  =  (/) ) )
6461, 63mpbid 210 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( S  i^i  ( A ( ball `  D ) ( F `
 A ) ) )  =  (/) )
6553, 64syl5eq 2510 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6665adantr 465 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =  (/) )
6741ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  (TopOn `  X ) )
6867, 43syl 16 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  J  e.  Top )
69 simpll2 1036 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  X
)
7067, 45syl 16 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  X  =  U. J )
7169, 70sseqtrd 3535 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  S  C_  U. J
)
72 simplr 755 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( ( cls `  J
) `  S )
)
73 simpll1 1035 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  D  e.  ( *Met `  X
) )
74 simpll3 1037 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  X )
7559ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( F `  A )  e.  RR* )
764blopn 21129 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( F `  A
)  e.  RR* )  ->  ( A ( ball `  D ) ( F `
 A ) )  e.  J )
7773, 74, 75, 76syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( A
( ball `  D )
( F `  A
) )  e.  J
)
78 simpr 461 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  0  <  ( F `  A ) )
79 xblcntr 21040 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( ( F `  A )  e.  RR*  /\  0  <  ( F `
 A ) ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8073, 74, 75, 78, 79syl112anc 1232 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  A  e.  ( A ( ball `  D
) ( F `  A ) ) )
8149clsndisj 19703 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  U. J  /\  A  e.  ( ( cls `  J ) `  S ) )  /\  ( ( A (
ball `  D )
( F `  A
) )  e.  J  /\  A  e.  ( A ( ball `  D
) ( F `  A ) ) ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8268, 71, 72, 77, 80, 81syl32anc 1236 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X )  /\  A  e.  ( ( cls `  J
) `  S )
)  /\  0  <  ( F `  A ) )  ->  ( ( A ( ball `  D
) ( F `  A ) )  i^i 
S )  =/=  (/) )
8382ex 434 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  ->  (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =/=  (/) ) )
8483necon2bd 2672 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( (
( A ( ball `  D ) ( F `
 A ) )  i^i  S )  =  (/)  ->  -.  0  <  ( F `  A ) ) )
8566, 84mpd 15 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  -.  0  <  ( F `  A
) )
8657simprbi 464 . . . . . . . 8  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
8756, 86syl 16 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  0  <_  ( F `  A ) )
88 0xr 9657 . . . . . . . 8  |-  0  e.  RR*
89 xrleloe 11375 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9088, 59, 89sylancr 663 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
9187, 90mpbid 210 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9291adantr 465 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
9392ord 377 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( -.  0  <  ( F `  A )  ->  0  =  ( F `  A ) ) )
9485, 93mpd 15 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  0  =  ( F `  A ) )
9594eqcomd 2465 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  S  C_  X  /\  A  e.  X
)  /\  A  e.  ( ( cls `  J
) `  S )
)  ->  ( F `  A )  =  0 )
9652, 95impbida 832 1  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808    i^i cin 3470    C_ wss 3471   (/)c0 3793   U.cuni 4251   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   ran crn 5009   ` cfv 5594  (class class class)co 6296   supcsup 7918   RRcr 9508   0cc0 9509   +oocpnf 9642   RR*cxr 9644    < clt 9645    <_ cle 9646   RR+crp 11245   [,]cicc 11557   *Metcxmt 18530   ballcbl 18532   MetOpencmopn 18535   Topctop 19521  TopOnctopon 19522   clsccl 19646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-icc 11561  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-cld 19647  df-ntr 19648  df-cls 19649
This theorem is referenced by:  metnrmlem1a  21488  lebnumlem1  21587
  Copyright terms: Public domain W3C validator