MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsge Structured version   Visualization version   GIF version

Theorem metdsge 22460
Description: The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsge (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem metdsge
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1059 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝐴𝑋)
2 metdscn.f . . . . 5 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
32metdsval 22458 . . . 4 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
41, 3syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
54breq2d 4595 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ 𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )))
6 simpll1 1093 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐷 ∈ (∞Met‘𝑋))
71adantr 480 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝐴𝑋)
8 simpl2 1058 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑆𝑋)
98sselda 3568 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑤𝑋)
10 xmetcl 21946 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑤𝑋) → (𝐴𝐷𝑤) ∈ ℝ*)
116, 7, 9, 10syl3anc 1318 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝐴𝐷𝑤) ∈ ℝ*)
12 oveq2 6557 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝐷𝑦) = (𝐴𝐷𝑤))
1312cbvmptv 4678 . . . . 5 (𝑦𝑆 ↦ (𝐴𝐷𝑦)) = (𝑤𝑆 ↦ (𝐴𝐷𝑤))
1411, 13fmptd 6292 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ*)
15 frn 5966 . . . 4 ((𝑦𝑆 ↦ (𝐴𝐷𝑦)):𝑆⟶ℝ* → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
1614, 15syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*)
17 simpr 476 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
18 infxrgelb 12037 . . 3 ((ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)) ⊆ ℝ*𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
1916, 17, 18syl2anc 691 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧))
2017adantr 480 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → 𝑅 ∈ ℝ*)
21 elbl2 22005 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑋𝑤𝑋)) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
226, 20, 7, 9, 21syl22anc 1319 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑤) < 𝑅))
23 xrltnle 9984 . . . . . . 7 (((𝐴𝐷𝑤) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2411, 20, 23syl2anc 691 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → ((𝐴𝐷𝑤) < 𝑅 ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2522, 24bitrd 267 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑤 ∈ (𝐴(ball‘𝐷)𝑅) ↔ ¬ 𝑅 ≤ (𝐴𝐷𝑤)))
2625con2bid 343 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) ∧ 𝑤𝑆) → (𝑅 ≤ (𝐴𝐷𝑤) ↔ ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
2726ralbidva 2968 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤) ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅)))
28 ovex 6577 . . . . 5 (𝐴𝐷𝑤) ∈ V
2928rgenw 2908 . . . 4 𝑤𝑆 (𝐴𝐷𝑤) ∈ V
30 breq2 4587 . . . . 5 (𝑧 = (𝐴𝐷𝑤) → (𝑅𝑧𝑅 ≤ (𝐴𝐷𝑤)))
3113, 30ralrnmpt 6276 . . . 4 (∀𝑤𝑆 (𝐴𝐷𝑤) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤)))
3229, 31ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ ∀𝑤𝑆 𝑅 ≤ (𝐴𝐷𝑤))
33 disj 3969 . . 3 ((𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅ ↔ ∀𝑤𝑆 ¬ 𝑤 ∈ (𝐴(ball‘𝐷)𝑅))
3427, 32, 333bitr4g 302 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝐴𝐷𝑦))𝑅𝑧 ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
355, 19, 343bitrd 293 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  infcinf 8230  *cxr 9952   < clt 9953  cle 9954  ∞Metcxmt 19552  ballcbl 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-psmet 19559  df-xmet 19560  df-bl 19562
This theorem is referenced by:  metds0  22461  metdstri  22462  metdseq0  22465  lebnumlem3  22570
  Copyright terms: Public domain W3C validator