MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssel Structured version   Visualization version   GIF version

Theorem lssel 18759
Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssel ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)

Proof of Theorem lssel
StepHypRef Expression
1 lssss.v . . 3 𝑉 = (Base‘𝑊)
2 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
31, 2lssss 18758 . 2 (𝑈𝑆𝑈𝑉)
43sselda 3568 1 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  Basecbs 15695  LSubSpclss 18753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-lss 18754
This theorem is referenced by:  lssvsubcl  18765  lssvancl1  18766  lssvancl2  18767  lss0cl  18768  lssvacl  18775  lssvscl  18776  lssvnegcl  18777  lspsnel6  18815  lspsnel5a  18817  lssats2  18821  lsmcl  18904  lsmelval2  18906  lsmcv  18962  ocvin  19837  lsatel  33310  lsmsat  33313  lssatomic  33316  lssats  33317  lsat0cv  33338  lshpkrlem1  33415  lshpkrlem5  33419  lshpkr  33422  dihjat1lem  35735  dochsatshpb  35759  lcfrvalsnN  35848  lcfrlem4  35852  lcfrlem6  35854  lcfrlem16  35865  lcfrlem29  35878  lcfrlem35  35884  mapdval4N  35939  mapdpglem2a  35981  mapdpglem23  36001
  Copyright terms: Public domain W3C validator