Proof of Theorem lcfrlem16
Step | Hyp | Ref
| Expression |
1 | | lcfrlem16.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝐸 ∖ { 0 })) |
2 | 1 | eldifad 3552 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐸) |
3 | | lcfrlem16.m |
. . . 4
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
4 | 2, 3 | syl6eleq 2698 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ∪
𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
5 | | eliun 4460 |
. . 3
⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
6 | 4, 5 | sylib 207 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
7 | | lcf1o.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑈) |
8 | | lcf1o.r |
. . . . 5
⊢ 𝑅 = (Base‘𝑆) |
9 | | lcf1o.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑈) |
10 | | lcf1o.l |
. . . . 5
⊢ 𝐿 = (LKer‘𝑈) |
11 | | lcf1o.d |
. . . . 5
⊢ 𝐷 = (LDual‘𝑈) |
12 | | eqid 2610 |
. . . . 5
⊢ (
·𝑠 ‘𝐷) = ( ·𝑠
‘𝐷) |
13 | | lcf1o.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | lcf1o.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
15 | | lcflo.k |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | 13, 14, 15 | dvhlvec 35416 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LVec) |
17 | 16 | 3ad2ant1 1075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LVec) |
18 | | lcfrlem16.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝑃) |
19 | | eqid 2610 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
20 | | lcfrlem16.p |
. . . . . . . . 9
⊢ 𝑃 = (LSubSp‘𝐷) |
21 | 19, 20 | lssel 18759 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑃 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
22 | 18, 21 | sylan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
23 | 13, 14, 15 | dvhlmod 35417 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
24 | 9, 11, 19, 23 | ldualvbase 33431 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
25 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = 𝐹) |
26 | 22, 25 | eleqtrd 2690 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ 𝐹) |
27 | 26 | 3adant3 1074 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑔 ∈ 𝐹) |
28 | | lcf1o.o |
. . . . . . 7
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
29 | | lcf1o.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑈) |
30 | | lcf1o.a |
. . . . . . 7
⊢ + =
(+g‘𝑈) |
31 | | lcf1o.t |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑈) |
32 | | lcf1o.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑈) |
33 | | lcf1o.q |
. . . . . . 7
⊢ 𝑄 = (0g‘𝐷) |
34 | | lcf1o.c |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
35 | | lcf1o.j |
. . . . . . 7
⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
36 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
37 | 23 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
38 | 29, 9, 10, 37, 26 | lkrssv 33401 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ 𝑉) |
39 | 13, 14, 29, 28 | dochssv 35662 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉) |
40 | 36, 38, 39 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉) |
41 | 40 | ralrimiva 2949 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉) |
42 | | iunss 4497 |
. . . . . . . . . . 11
⊢ (∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉 ↔ ∀𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉) |
43 | 41, 42 | sylibr 223 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑉) |
44 | 3, 43 | syl5eqss 3612 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ⊆ 𝑉) |
45 | 44 | ssdifd 3708 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
46 | 45, 1 | sseldd 3569 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
47 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem10 35859 |
. . . . . 6
⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐹) |
48 | 47 | 3ad2ant1 1075 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐽‘𝑋) ∈ 𝐹) |
49 | | eqid 2610 |
. . . . . . 7
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) |
50 | 15 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
51 | | simp3 1056 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
52 | | eldifsni 4261 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (𝐸 ∖ { 0 }) → 𝑋 ≠ 0 ) |
53 | 1, 52 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ≠ 0 ) |
54 | 53 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ≠ 0 ) |
55 | | eldifsn 4260 |
. . . . . . . . 9
⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘𝑔)) ∖ { 0 }) ↔ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑋 ≠ 0 )) |
56 | 51, 54, 55 | sylanbrc 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝑔)) ∖ { 0 })) |
57 | 13, 28, 14, 29, 32, 9, 10, 50, 27, 56, 49 | dochsnkrlem2 35777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSAtoms‘𝑈)) |
58 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem15 35864 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) |
59 | | eldifsn 4260 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ∖ { 0 }) ↔ (𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ∧ 𝑋 ≠ 0 )) |
60 | 58, 53, 59 | sylanbrc 695 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ∖ { 0 })) |
61 | 13, 28, 14, 29, 32, 9, 10, 15, 47, 60, 49 | dochsnkrlem2 35777 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ∈ (LSAtoms‘𝑈)) |
62 | 61 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ∈ (LSAtoms‘𝑈)) |
63 | 58 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) |
64 | 32, 49, 17, 57, 62, 54, 51, 63 | lsat2el 33312 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) |
65 | | eqid 2610 |
. . . . . . 7
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
66 | | lcfrlem16.gs |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
67 | 66 | 3ad2ant1 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝐺 ⊆ 𝐶) |
68 | | simp2 1055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑔 ∈ 𝐺) |
69 | 67, 68 | sseldd 3569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑔 ∈ 𝐶) |
70 | 13, 65, 28, 14, 9, 10, 34, 50, 27 | lcfl5 35803 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑔 ∈ 𝐶 ↔ (𝐿‘𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊))) |
71 | 69, 70 | mpbid 221 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐿‘𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
72 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem13 35862 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽‘𝑋) ∈ (𝐶 ∖ {𝑄})) |
73 | 72 | eldifad 3552 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐶) |
74 | 13, 65, 28, 14, 9, 10, 34, 15, 47 | lcfl5 35803 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐽‘𝑋) ∈ 𝐶 ↔ (𝐿‘(𝐽‘𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))) |
75 | 73, 74 | mpbid 221 |
. . . . . . . 8
⊢ (𝜑 → (𝐿‘(𝐽‘𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
76 | 75 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐿‘(𝐽‘𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
77 | 13, 65, 28, 50, 71, 76 | doch11 35680 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (( ⊥ ‘(𝐿‘𝑔)) = ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) ↔ (𝐿‘𝑔) = (𝐿‘(𝐽‘𝑋)))) |
78 | 64, 77 | mpbid 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐿‘𝑔) = (𝐿‘(𝐽‘𝑋))) |
79 | 7, 8, 9, 10, 11, 12, 17, 27, 48, 78 | eqlkr4 33470 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ∃𝑘 ∈ 𝑅 (𝐽‘𝑋) = (𝑘( ·𝑠
‘𝐷)𝑔)) |
80 | 23 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
81 | 80 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → 𝑈 ∈ LMod) |
82 | 18 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝐺 ∈ 𝑃) |
83 | 82 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → 𝐺 ∈ 𝑃) |
84 | | simpr 476 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → 𝑘 ∈ 𝑅) |
85 | | simpl2 1058 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → 𝑔 ∈ 𝐺) |
86 | 7, 8, 11, 12, 20, 81, 83, 84, 85 | ldualssvscl 33463 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → (𝑘( ·𝑠
‘𝐷)𝑔) ∈ 𝐺) |
87 | | eleq1 2676 |
. . . . . 6
⊢ ((𝐽‘𝑋) = (𝑘( ·𝑠
‘𝐷)𝑔) → ((𝐽‘𝑋) ∈ 𝐺 ↔ (𝑘( ·𝑠
‘𝐷)𝑔) ∈ 𝐺)) |
88 | 86, 87 | syl5ibrcom 236 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) ∧ 𝑘 ∈ 𝑅) → ((𝐽‘𝑋) = (𝑘( ·𝑠
‘𝐷)𝑔) → (𝐽‘𝑋) ∈ 𝐺)) |
89 | 88 | rexlimdva 3013 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (∃𝑘 ∈ 𝑅 (𝐽‘𝑋) = (𝑘( ·𝑠
‘𝐷)𝑔) → (𝐽‘𝑋) ∈ 𝐺)) |
90 | 79, 89 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺 ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝐽‘𝑋) ∈ 𝐺) |
91 | 90 | rexlimdv3a 3015 |
. 2
⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝐽‘𝑋) ∈ 𝐺)) |
92 | 6, 91 | mpd 15 |
1
⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐺) |