Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel5a Structured version   Visualization version   GIF version

Theorem lspsnel5a 18817
 Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
lspsnel5a.s 𝑆 = (LSubSp‘𝑊)
lspsnel5a.n 𝑁 = (LSpan‘𝑊)
lspsnel5a.w (𝜑𝑊 ∈ LMod)
lspsnel5a.a (𝜑𝑈𝑆)
lspsnel5a.x (𝜑𝑋𝑈)
Assertion
Ref Expression
lspsnel5a (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem lspsnel5a
StepHypRef Expression
1 lspsnel5a.x . 2 (𝜑𝑋𝑈)
2 eqid 2610 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 lspsnel5a.s . . 3 𝑆 = (LSubSp‘𝑊)
4 lspsnel5a.n . . 3 𝑁 = (LSpan‘𝑊)
5 lspsnel5a.w . . 3 (𝜑𝑊 ∈ LMod)
6 lspsnel5a.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 18759 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 691 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8lspsnel5 18816 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 221 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  {csn 4125  ‘cfv 5804  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-lmod 18688  df-lss 18754  df-lsp 18793 This theorem is referenced by:  lssats2  18821  lspsn  18823  lspsnvsi  18825  lsmelval2  18906  lspprabs  18916  lspvadd  18917  lspabs3  18942  lsmcv  18962  lspsnat  18966  lsppratlem6  18973  issubassa2  19166  lshpnel  33288  lsatel  33310  lsmsat  33313  lssatomic  33316  lssats  33317  lsat0cv  33338  dia2dimlem10  35380  dochsatshpb  35759  lclkrlem2f  35819  lcfrlem25  35874  lcfrlem35  35884  mapdval2N  35937  mapdrvallem2  35952  mapdpglem8  35986  mapdpglem13  35991  mapdindp0  36026  mapdh6aN  36042  mapdh8e  36091  mapdh9a  36097  hdmap1l6a  36117  hdmapval0  36143  hdmapval3lemN  36147  hdmap10lem  36149  hdmap11lem1  36151  hdmap11lem2  36152  hdmaprnlem4N  36163  hdmaprnlem3eN  36168
 Copyright terms: Public domain W3C validator