Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem6 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 35892. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem6.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem6.p | ⊢ + = (+g‘𝑈) |
lcfrlem6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem6.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem6.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem6.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem6.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem6.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem6.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem6.y | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem6.en | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem6 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem6.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | lcfrlem6.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
3 | 1, 2 | syl6eleq 2698 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
4 | eliun 4460 | . . . . 5 ⊢ (𝑋 ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
5 | 3, 4 | sylib 207 | . . . 4 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
6 | lcfrlem6.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | lcfrlem6.u | . . . . . . . . . 10 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | lcfrlem6.k | . . . . . . . . . 10 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 6, 7, 8 | dvhlmod 35417 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑈 ∈ LMod) |
11 | 10 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑈 ∈ LMod) |
12 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | eqid 2610 | . . . . . . . . . 10 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
14 | eqid 2610 | . . . . . . . . . 10 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
15 | lcfrlem6.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
16 | lcfrlem6.g | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
17 | eqid 2610 | . . . . . . . . . . . . 13 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
18 | lcfrlem6.q | . . . . . . . . . . . . 13 ⊢ 𝑄 = (LSubSp‘𝐷) | |
19 | 17, 18 | lssel 18759 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ 𝑄 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
20 | 16, 19 | sylan 487 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (Base‘𝐷)) |
21 | lcfrlem6.d | . . . . . . . . . . . . 13 ⊢ 𝐷 = (LDual‘𝑈) | |
22 | 14, 21, 17, 9 | ldualvbase 33431 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝐷) = (LFnl‘𝑈)) |
23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (Base‘𝐷) = (LFnl‘𝑈)) |
24 | 20, 23 | eleqtrd 2690 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑔 ∈ (LFnl‘𝑈)) |
25 | 13, 14, 15, 10, 24 | lkrssv 33401 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝐿‘𝑔) ⊆ (Base‘𝑈)) |
26 | eqid 2610 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
27 | lcfrlem6.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
28 | 6, 7, 13, 26, 27 | dochlss 35661 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝑔) ⊆ (Base‘𝑈)) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
29 | 12, 25, 28 | syl2anc 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) |
31 | simpr 476 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
32 | lcfrlem6.en | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
33 | 32 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
34 | 33 | adantr 480 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
35 | simpr 476 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) | |
36 | 34, 35 | eqsstr3d 3603 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔))) |
37 | 36 | ex 449 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → ((𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)) → (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
38 | lcfrlem6.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
39 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1 | lcfrlem4 35852 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
40 | 39 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑋 ∈ (Base‘𝑈)) |
41 | 13, 26, 38, 10, 29, 40 | lspsnel5 18816 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑋}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
42 | lcfrlem6.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
43 | 6, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42 | lcfrlem4 35852 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
44 | 43 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ (Base‘𝑈)) |
45 | 13, 26, 38, 10, 29, 44 | lspsnel5 18816 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)) ↔ (𝑁‘{𝑌}) ⊆ ( ⊥ ‘(𝐿‘𝑔)))) |
46 | 37, 41, 45 | 3imtr4d 282 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
47 | 46 | imp 444 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔))) |
48 | lcfrlem6.p | . . . . . . . 8 ⊢ + = (+g‘𝑈) | |
49 | 48, 26 | lssvacl 18775 | . . . . . . 7 ⊢ (((𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝑔)) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) ∧ 𝑌 ∈ ( ⊥ ‘(𝐿‘𝑔)))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
50 | 11, 30, 31, 47, 49 | syl22anc 1319 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐺) ∧ 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔))) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
51 | 50 | ex 449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐺) → (𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
52 | 51 | reximdva 3000 | . . . 4 ⊢ (𝜑 → (∃𝑔 ∈ 𝐺 𝑋 ∈ ( ⊥ ‘(𝐿‘𝑔)) → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔)))) |
53 | 5, 52 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) |
54 | eliun 4460 | . . 3 ⊢ ((𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) ↔ ∃𝑔 ∈ 𝐺 (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝑔))) | |
55 | 53, 54 | sylibr 223 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔))) |
56 | 55, 2 | syl6eleqr 2699 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ⊆ wss 3540 {csn 4125 ∪ ciun 4455 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 LModclmod 18686 LSubSpclss 18753 LSpanclspn 18792 LFnlclfn 33362 LKerclk 33390 LDualcld 33428 HLchlt 33655 LHypclh 34288 DVecHcdvh 35385 ocHcoch 35654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-riotaBAD 33257 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-undef 7286 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-0g 15925 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-subg 17414 df-cntz 17573 df-lsm 17874 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-lmod 18688 df-lss 18754 df-lsp 18793 df-lvec 18924 df-lfl 33363 df-lkr 33391 df-ldual 33429 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 df-lvols 33804 df-lines 33805 df-psubsp 33807 df-pmap 33808 df-padd 34100 df-lhyp 34292 df-laut 34293 df-ldil 34408 df-ltrn 34409 df-trl 34464 df-tendo 35061 df-edring 35063 df-disoa 35336 df-dvech 35386 df-dib 35446 df-dic 35480 df-dih 35536 df-doch 35655 |
This theorem is referenced by: lcfrlem41 35890 |
Copyright terms: Public domain | W3C validator |