Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Visualization version   GIF version

Theorem mapdval4N 35939
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 35810 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h 𝐻 = (LHyp‘𝐾)
mapdval4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval4.s 𝑆 = (LSubSp‘𝑈)
mapdval4.f 𝐹 = (LFnl‘𝑈)
mapdval4.l 𝐿 = (LKer‘𝑈)
mapdval4.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval4.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdval4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdval4.t (𝜑𝑇𝑆)
Assertion
Ref Expression
mapdval4N (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Distinct variable groups:   𝑣,𝑓,𝐹   𝑓,𝐾   𝑣,𝐿   𝑣,𝑂   𝑇,𝑓,𝑣   𝑣,𝑈   𝑓,𝑊   𝜑,𝑓,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑓)   𝑈(𝑓)   𝐻(𝑣,𝑓)   𝐾(𝑣)   𝐿(𝑓)   𝑀(𝑣,𝑓)   𝑂(𝑓)   𝑊(𝑣)

Proof of Theorem mapdval4N
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdval4.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdval4.s . . 3 𝑆 = (LSubSp‘𝑈)
4 eqid 2610 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
5 mapdval4.f . . 3 𝐹 = (LFnl‘𝑈)
6 mapdval4.l . . 3 𝐿 = (LKer‘𝑈)
7 mapdval4.o . . 3 𝑂 = ((ocH‘𝐾)‘𝑊)
8 mapdval4.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdval4.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 mapdval4.t . . 3 (𝜑𝑇𝑆)
11 eqid 2610 . . 3 {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 35937 . 2 (𝜑 → (𝑀𝑇) = {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})})
1311lcfl1lem 35798 . . . . . 6 (𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ↔ (𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
1413anbi1i 727 . . . . 5 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
15 anass 679 . . . . 5 (((𝑓𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
1614, 15bitri 263 . . . 4 ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))))
17 r19.42v 3073 . . . . . 6 (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
18 simprr 792 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
1918fveq2d 6107 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝑂‘((LSpan‘𝑈)‘{𝑣})))
20 simprl 790 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
21 eqid 2610 . . . . . . . . . 10 (Base‘𝑈) = (Base‘𝑈)
229adantr 480 . . . . . . . . . . . 12 ((𝜑𝑓𝐹) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2322adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2510adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓𝐹) → 𝑇𝑆)
2621, 3lssel 18759 . . . . . . . . . . . . 13 ((𝑇𝑆𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2725, 26sylan 487 . . . . . . . . . . . 12 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → 𝑣 ∈ (Base‘𝑈))
2827snssd 4281 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → {𝑣} ⊆ (Base‘𝑈))
2928adantr 480 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → {𝑣} ⊆ (Base‘𝑈))
301, 2, 7, 21, 4, 24, 29dochocsp 35686 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘((LSpan‘𝑈)‘{𝑣})) = (𝑂‘{𝑣}))
3119, 20, 303eqtr3rd 2653 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) → (𝑂‘{𝑣}) = (𝐿𝑓))
3227adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑣 ∈ (Base‘𝑈))
33 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘{𝑣}) = (𝐿𝑓))
3433eqcomd 2616 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐿𝑓) = (𝑂‘{𝑣}))
35 sneq 4135 . . . . . . . . . . . . . 14 (𝑤 = 𝑣 → {𝑤} = {𝑣})
3635fveq2d 6107 . . . . . . . . . . . . 13 (𝑤 = 𝑣 → (𝑂‘{𝑤}) = (𝑂‘{𝑣}))
3736eqeq2d 2620 . . . . . . . . . . . 12 (𝑤 = 𝑣 → ((𝐿𝑓) = (𝑂‘{𝑤}) ↔ (𝐿𝑓) = (𝑂‘{𝑣})))
3837rspcev 3282 . . . . . . . . . . 11 ((𝑣 ∈ (Base‘𝑈) ∧ (𝐿𝑓) = (𝑂‘{𝑣})) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
3932, 34, 38syl2anc 691 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤}))
4023adantr 480 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpllr 795 . . . . . . . . . . 11 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → 𝑓𝐹)
421, 7, 2, 21, 5, 6, 40, 41lcfl8a 35810 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ↔ ∃𝑤 ∈ (Base‘𝑈)(𝐿𝑓) = (𝑂‘{𝑤})))
4339, 42mpbird 246 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓))
441, 2, 7, 21, 4, 23, 27dochocsn 35688 . . . . . . . . . . 11 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (𝑂‘(𝑂‘{𝑣})) = ((LSpan‘𝑈)‘{𝑣}))
45 fveq2 6103 . . . . . . . . . . 11 ((𝑂‘{𝑣}) = (𝐿𝑓) → (𝑂‘(𝑂‘{𝑣})) = (𝑂‘(𝐿𝑓)))
4644, 45sylan9req 2665 . . . . . . . . . 10 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((LSpan‘𝑈)‘{𝑣}) = (𝑂‘(𝐿𝑓)))
4746eqcomd 2616 . . . . . . . . 9 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))
4843, 47jca 553 . . . . . . . 8 ((((𝜑𝑓𝐹) ∧ 𝑣𝑇) ∧ (𝑂‘{𝑣}) = (𝐿𝑓)) → ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})))
4931, 48impbida 873 . . . . . . 7 (((𝜑𝑓𝐹) ∧ 𝑣𝑇) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑂‘{𝑣}) = (𝐿𝑓)))
5049rexbidva 3031 . . . . . 6 ((𝜑𝑓𝐹) → (∃𝑣𝑇 ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5117, 50syl5bbr 273 . . . . 5 ((𝜑𝑓𝐹) → (((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)))
5251pm5.32da 671 . . . 4 (𝜑 → ((𝑓𝐹 ∧ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣}))) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5316, 52syl5bb 271 . . 3 (𝜑 → ((𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∧ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})) ↔ (𝑓𝐹 ∧ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓))))
5453rabbidva2 3162 . 2 (𝜑 → {𝑓 ∈ {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)} ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = ((LSpan‘𝑈)‘{𝑣})} = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
5512, 54eqtrd 2644 1 (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  wss 3540  {csn 4125  cfv 5804  Basecbs 15695  LSubSpclss 18753  LSpanclspn 18792  LFnlclfn 33362  LKerclk 33390  HLchlt 33655  LHypclh 34288  DVecHcdvh 35385  ocHcoch 35654  mapdcmpd 35931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281  df-lshyp 33282  df-lfl 33363  df-lkr 33391  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tgrp 35049  df-tendo 35061  df-edring 35063  df-dveca 35309  df-disoa 35336  df-dvech 35386  df-dib 35446  df-dic 35480  df-dih 35536  df-doch 35655  df-djh 35702  df-mapd 35932
This theorem is referenced by:  mapdval5N  35940  mapd1dim2lem1N  35951
  Copyright terms: Public domain W3C validator