MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   GIF version

Theorem lspfixed 18949
Description: Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.)
Hypotheses
Ref Expression
lspfixed.v 𝑉 = (Base‘𝑊)
lspfixed.p + = (+g𝑊)
lspfixed.o 0 = (0g𝑊)
lspfixed.n 𝑁 = (LSpan‘𝑊)
lspfixed.w (𝜑𝑊 ∈ LVec)
lspfixed.x (𝜑𝑋𝑉)
lspfixed.y (𝜑𝑌𝑉)
lspfixed.z (𝜑𝑍𝑉)
lspfixed.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
lspfixed.f (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
lspfixed.g (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspfixed (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)

Proof of Theorem lspfixed
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspfixed.v . . . 4 𝑉 = (Base‘𝑊)
3 lspfixed.p . . . 4 + = (+g𝑊)
4 eqid 2610 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2610 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2610 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspfixed.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspfixed.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 18927 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspfixed.y . . . 4 (𝜑𝑌𝑉)
12 lspfixed.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 18915 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))))
141, 13mpbid 221 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
15103ad2ant1 1075 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
16 eqid 2610 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
172, 16, 7lspsncl 18798 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
1810, 12, 17syl2anc 691 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
19183ad2ant1 1075 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2083ad2ant1 1075 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
214lvecdrng 18926 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2220, 21syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
23 simp2l 1080 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
24 lspfixed.f . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
25243ad2ant1 1075 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
26 simpl3 1059 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
27 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2827oveq1d 6564 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
29 simpl1 1057 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝜑)
3029, 10syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
3129, 11syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌𝑉)
32 eqid 2610 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
33 lspfixed.o . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
342, 4, 6, 32, 33lmod0vs 18719 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3530, 31, 34syl2anc 691 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3628, 35eqtrd 2644 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = 0 )
3736oveq1d 6564 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ( 0 + (𝑙( ·𝑠𝑊)𝑍)))
38 simp2r 1081 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
39123ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
402, 4, 6, 5lmodvscl 18703 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4115, 38, 39, 40syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4241adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
432, 3, 33lmod0vlid 18716 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4430, 42, 43syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4526, 37, 443eqtrd 2648 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑙( ·𝑠𝑊)𝑍))
4629, 18syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
47 simpl2r 1108 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
482, 7lspsnid 18814 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
4910, 12, 48syl2anc 691 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
5029, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ (𝑁‘{𝑍}))
514, 6, 5, 16lssvscl 18776 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5230, 46, 47, 50, 51syl22anc 1319 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5345, 52eqeltrd 2688 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
5453ex 449 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑍})))
5554necon3bd 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑍}) → 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5625, 55mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
57 eqid 2610 . . . . . . . . 9 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
585, 32, 57drnginvrcl 18587 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
5922, 23, 56, 58syl3anc 1318 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
60493ad2ant1 1075 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍 ∈ (𝑁‘{𝑍}))
6115, 19, 38, 60, 51syl22anc 1319 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
624, 6, 5, 16lssvscl 18776 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
6315, 19, 59, 61, 62syl22anc 1319 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
645, 32, 57drnginvrn0 18588 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
6522, 23, 56, 64syl3anc 1318 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
66 lspfixed.e . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
67663ad2ant1 1075 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
68 simpl3 1059 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
69 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑙 = (0g‘(Scalar‘𝑊)) → (𝑙( ·𝑠𝑊)𝑍) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍))
702, 4, 6, 32, 33lmod0vs 18719 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7115, 39, 70syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7269, 71sylan9eqr 2666 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) = 0 )
7372oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ((𝑘( ·𝑠𝑊)𝑌) + 0 ))
74113ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
752, 4, 6, 5lmodvscl 18703 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
7615, 23, 74, 75syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
772, 3, 33lmod0vrid 18717 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7815, 76, 77syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7978adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
8068, 73, 793eqtrd 2648 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑌))
812, 16, 7lspsncl 18798 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8210, 11, 81syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
83823ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
842, 7lspsnid 18814 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
8510, 11, 84syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
86853ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑌}))
874, 6, 5, 16lssvscl 18776 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8815, 83, 23, 86, 87syl22anc 1319 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8988adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
9080, 89eqeltrd 2688 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑌}))
9190ex 449 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑌})))
9291necon3bd 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑙 ≠ (0g‘(Scalar‘𝑊))))
9367, 92mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ≠ (0g‘(Scalar‘𝑊)))
94 simpl1 1057 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝜑)
9594, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
96 preq2 4213 . . . . . . . . . . . . . 14 (𝑍 = 0 → {𝑌, 𝑍} = {𝑌, 0 })
9796fveq2d 6107 . . . . . . . . . . . . 13 (𝑍 = 0 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌, 0 }))
982, 33, 7, 15, 74lsppr0 18913 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
9997, 98sylan9eqr 2666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
10095, 99eleqtrd 2690 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌}))
101100ex 449 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑍 = 0𝑋 ∈ (𝑁‘{𝑌})))
102101necon3bd 2796 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑍0 ))
10367, 102mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍0 )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 18930 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑙( ·𝑠𝑊)𝑍) ≠ 0 ↔ (𝑙 ≠ (0g‘(Scalar‘𝑊)) ∧ 𝑍0 )))
10593, 103, 104mpbir2and 959 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 18930 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ↔ (((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )))
10765, 105, 106mpbir2and 959 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 )
108 eldifsn 4260 . . . . . 6 ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ↔ ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}) ∧ (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ))
10963, 107, 108sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }))
110 simp3 1056 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
1112, 3lmodvacl 18700 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
11215, 76, 41, 111syl3anc 1318 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
1132, 7lspsnid 18814 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11415, 112, 113syl2anc 691 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
115110, 114eqeltrd 2688 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1162, 4, 6, 5, 32, 7lspsnvs 18935 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊))) ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11720, 59, 65, 112, 116syl121anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1182, 3, 4, 6, 5lmodvsdi 18709 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
11915, 59, 76, 41, 118syl13anc 1320 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
120 eqid 2610 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
121 eqid 2610 . . . . . . . . . . . . . . 15 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1225, 32, 120, 121, 57drnginvrl 18589 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
12322, 23, 56, 122syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
124123oveq1d 6564 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
1252, 4, 6, 5, 120lmodvsass 18711 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
12615, 59, 23, 74, 125syl13anc 1320 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
1272, 4, 6, 121lmodvs1 18714 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
12815, 74, 127syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
129124, 126, 1283eqtr3d 2652 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) = 𝑌)
130129oveq1d 6564 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
131119, 130eqtrd 2644 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
132131sneqd 4137 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → {(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
133132fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
134117, 133eqtr3d 2646 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
135115, 134eleqtrd 2690 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
136 oveq2 6557 . . . . . . . . 9 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑌 + 𝑧) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
137136sneqd 4137 . . . . . . . 8 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → {(𝑌 + 𝑧)} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
138137fveq2d 6107 . . . . . . 7 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑁‘{(𝑌 + 𝑧)}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
139138eleq2d 2673 . . . . . 6 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}) ↔ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})))
140139rspcev 3282 . . . . 5 (((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ∧ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
141109, 135, 140syl2anc 691 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
1421413exp 1256 . . 3 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))))
143142rexlimdvv 3019 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})))
14414, 143mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  {csn 4125  {cpr 4127  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  1rcur 18324  invrcinvr 18494  DivRingcdr 18570  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lsatfixedN  33314
  Copyright terms: Public domain W3C validator