MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj2 Structured version   Visualization version   GIF version

Theorem lspdisj2 18948
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lspdisj2.v 𝑉 = (Base‘𝑊)
lspdisj2.o 0 = (0g𝑊)
lspdisj2.n 𝑁 = (LSpan‘𝑊)
lspdisj2.w (𝜑𝑊 ∈ LVec)
lspdisj2.x (𝜑𝑋𝑉)
lspdisj2.y (𝜑𝑌𝑉)
lspdisj2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspdisj2 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })

Proof of Theorem lspdisj2
StepHypRef Expression
1 sneq 4135 . . . . . 6 (𝑋 = 0 → {𝑋} = { 0 })
21fveq2d 6107 . . . . 5 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
3 lspdisj2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 18927 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lspdisj2.o . . . . . . 7 0 = (0g𝑊)
7 lspdisj2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
86, 7lspsn0 18829 . . . . . 6 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
95, 8syl 17 . . . . 5 (𝜑 → (𝑁‘{ 0 }) = { 0 })
102, 9sylan9eqr 2666 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1110ineq1d 3775 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = ({ 0 } ∩ (𝑁‘{𝑌})))
12 lspdisj2.y . . . . . . 7 (𝜑𝑌𝑉)
13 lspdisj2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 eqid 2610 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 7lspsncl 18798 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
165, 12, 15syl2anc 691 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
176, 14lss0ss 18770 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘{𝑌}))
185, 16, 17syl2anc 691 . . . . 5 (𝜑 → { 0 } ⊆ (𝑁‘{𝑌}))
19 df-ss 3554 . . . . 5 ({ 0 } ⊆ (𝑁‘{𝑌}) ↔ ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2018, 19sylib 207 . . . 4 (𝜑 → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2120adantr 480 . . 3 ((𝜑𝑋 = 0 ) → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2211, 21eqtrd 2644 . 2 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
233adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LVec)
2416adantr 480 . . 3 ((𝜑𝑋0 ) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
25 lspdisj2.x . . . 4 (𝜑𝑋𝑉)
2625adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑋𝑉)
27 lspdisj2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2827adantr 480 . . . 4 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2923adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3012adantr 480 . . . . . . . 8 ((𝜑𝑋0 ) → 𝑌𝑉)
3130adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 476 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
33 simplr 788 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋0 )
3413, 6, 7, 29, 31, 32, 33lspsneleq 18936 . . . . . 6 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3534ex 449 . . . . 5 ((𝜑𝑋0 ) → (𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3635necon3ad 2795 . . . 4 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → ¬ 𝑋 ∈ (𝑁‘{𝑌})))
3728, 36mpd 15 . . 3 ((𝜑𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
3813, 6, 7, 14, 23, 24, 26, 37lspdisj 18946 . 2 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
3922, 38pm2.61dane 2869 1 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  cin 3539  wss 3540  {csn 4125  cfv 5804  Basecbs 15695  0gc0g 15923  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lvecindp2  18960  hdmaprnlem9N  36167
  Copyright terms: Public domain W3C validator