Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   GIF version

Theorem lsatfixedN 33314
Description: Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 18949. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v 𝑉 = (Base‘𝑊)
lsatfixed.p + = (+g𝑊)
lsatfixed.o 0 = (0g𝑊)
lsatfixed.n 𝑁 = (LSpan‘𝑊)
lsatfixed.a 𝐴 = (LSAtoms‘𝑊)
lsatfixed.w (𝜑𝑊 ∈ LVec)
lsatfixed.q (𝜑𝑄𝐴)
lsatfixed.x (𝜑𝑋𝑉)
lsatfixed.y (𝜑𝑌𝑉)
lsatfixed.e (𝜑𝑄 ≠ (𝑁‘{𝑋}))
lsatfixed.f (𝜑𝑄 ≠ (𝑁‘{𝑌}))
lsatfixed.g (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lsatfixedN (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝜑,𝑧   𝑧,𝑄   𝑧,𝑉   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lsatfixedN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3 (𝜑𝑄𝐴)
2 lsatfixed.w . . . 4 (𝜑𝑊 ∈ LVec)
3 lsatfixed.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsatfixed.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lsatfixed.o . . . . 5 0 = (0g𝑊)
6 lsatfixed.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 33296 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
91, 8mpbid 221 . 2 (𝜑 → ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}))
10 lsatfixed.p . . . . 5 + = (+g𝑊)
1123ad2ant1 1075 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LVec)
12 simp2 1055 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3552 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤𝑉)
14 lsatfixed.x . . . . . 6 (𝜑𝑋𝑉)
15143ad2ant1 1075 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑋𝑉)
16 lsatfixed.y . . . . . 6 (𝜑𝑌𝑉)
17163ad2ant1 1075 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑌𝑉)
18 simp3 1056 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 = (𝑁‘{𝑤}))
1918eqcomd 2616 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) = 𝑄)
20 lsatfixed.e . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑋}))
21203ad2ant1 1075 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑋}))
2219, 21eqnetrd 2849 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
233, 5, 4, 11, 12, 15, 22lspsnne1 18938 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑋}))
24 lsatfixed.f . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑌}))
25243ad2ant1 1075 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑌}))
2619, 25eqnetrd 2849 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
273, 5, 4, 11, 12, 17, 26lspsnne1 18938 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
28 lsatfixed.g . . . . . . . 8 (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
29283ad2ant1 1075 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
3019, 29eqsstrd 3602 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
31 eqid 2610 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
32 lveclmod 18927 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
332, 32syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
34333ad2ant1 1075 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LMod)
353, 31, 4, 33, 14, 16lspprcl 18799 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
36353ad2ant1 1075 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
373, 31, 4, 34, 36, 13lspsnel5 18816 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
3830, 37mpbird 246 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
393, 10, 5, 4, 11, 13, 15, 17, 23, 27, 38lspfixed 18949 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}))
40 simpl1 1057 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝜑)
4140, 2syl 17 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LVec)
42 simpl2 1058 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4340, 33syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LMod)
4440, 14syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑋𝑉)
4516snssd 4281 . . . . . . . . . . . 12 (𝜑 → {𝑌} ⊆ 𝑉)
463, 4lspssv 18804 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
4733, 45, 46syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
4847ssdifssd 3710 . . . . . . . . . 10 (𝜑 → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
49483ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
5049sselda 3568 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑧𝑉)
513, 10lmodvacl 18700 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉) → (𝑋 + 𝑧) ∈ 𝑉)
5243, 44, 50, 51syl3anc 1318 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑋 + 𝑧) ∈ 𝑉)
533, 5, 4, 41, 42, 52lspsncmp 18937 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
543, 31, 4lspsncl 18798 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑧) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5543, 52, 54syl2anc 691 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5642eldifad 3552 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤𝑉)
573, 31, 4, 43, 55, 56lspsnel5 18816 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)})))
58 simpl3 1059 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑄 = (𝑁‘{𝑤}))
5958eqeq1d 2612 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
6053, 57, 593bitr4rd 300 . . . . 5 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ 𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6160rexbidva 3031 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6239, 61mpbird 246 . . 3 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
6362rexlimdv3a 3015 . 2 (𝜑 → (∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})))
649, 63mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LVecclvec 18923  LSAtomsclsa 33279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924  df-lsatoms 33281
This theorem is referenced by:  hdmaprnlem3eN  36168
  Copyright terms: Public domain W3C validator