MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Structured version   Visualization version   GIF version

Theorem frgpmhm 18001
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
frgpmhm.w 𝑊 = (Base‘𝑀)
frgpmhm.g 𝐺 = (freeGrp‘𝐼)
frgpmhm.r = ( ~FG𝐼)
frgpmhm.f 𝐹 = (𝑥𝑊 ↦ [𝑥] )
Assertion
Ref Expression
frgpmhm (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊   𝑥,
Allowed substitution hints:   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem frgpmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 7455 . . . . 5 2𝑜 ∈ On
2 xpexg 6858 . . . . 5 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
31, 2mpan2 703 . . . 4 (𝐼𝑉 → (𝐼 × 2𝑜) ∈ V)
4 frgpmhm.m . . . . 5 𝑀 = (freeMnd‘(𝐼 × 2𝑜))
54frmdmnd 17219 . . . 4 ((𝐼 × 2𝑜) ∈ V → 𝑀 ∈ Mnd)
63, 5syl 17 . . 3 (𝐼𝑉𝑀 ∈ Mnd)
7 frgpmhm.g . . . . 5 𝐺 = (freeGrp‘𝐼)
87frgpgrp 17998 . . . 4 (𝐼𝑉𝐺 ∈ Grp)
9 grpmnd 17252 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
108, 9syl 17 . . 3 (𝐼𝑉𝐺 ∈ Mnd)
116, 10jca 553 . 2 (𝐼𝑉 → (𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd))
12 frgpmhm.w . . . . . . . . . 10 𝑊 = (Base‘𝑀)
134, 12frmdbas 17212 . . . . . . . . 9 ((𝐼 × 2𝑜) ∈ V → 𝑊 = Word (𝐼 × 2𝑜))
14 wrdexg 13170 . . . . . . . . . 10 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
15 fvi 6165 . . . . . . . . . 10 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1614, 15syl 17 . . . . . . . . 9 ((𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
1713, 16eqtr4d 2647 . . . . . . . 8 ((𝐼 × 2𝑜) ∈ V → 𝑊 = ( I ‘Word (𝐼 × 2𝑜)))
183, 17syl 17 . . . . . . 7 (𝐼𝑉𝑊 = ( I ‘Word (𝐼 × 2𝑜)))
1918eleq2d 2673 . . . . . 6 (𝐼𝑉 → (𝑥𝑊𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))))
2019biimpa 500 . . . . 5 ((𝐼𝑉𝑥𝑊) → 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)))
21 frgpmhm.r . . . . . 6 = ( ~FG𝐼)
22 eqid 2610 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜))
23 eqid 2610 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
247, 21, 22, 23frgpeccl 17997 . . . . 5 (𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜)) → [𝑥] ∈ (Base‘𝐺))
2520, 24syl 17 . . . 4 ((𝐼𝑉𝑥𝑊) → [𝑥] ∈ (Base‘𝐺))
26 frgpmhm.f . . . 4 𝐹 = (𝑥𝑊 ↦ [𝑥] )
2725, 26fmptd 6292 . . 3 (𝐼𝑉𝐹:𝑊⟶(Base‘𝐺))
2822, 21efger 17954 . . . . . . . 8 Er ( I ‘Word (𝐼 × 2𝑜))
29 ereq2 7637 . . . . . . . . 9 (𝑊 = ( I ‘Word (𝐼 × 2𝑜)) → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2𝑜))))
3018, 29syl 17 . . . . . . . 8 (𝐼𝑉 → ( Er 𝑊 Er ( I ‘Word (𝐼 × 2𝑜))))
3128, 30mpbiri 247 . . . . . . 7 (𝐼𝑉 Er 𝑊)
3231adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → Er 𝑊)
33 fvex 6113 . . . . . . . 8 (Base‘𝑀) ∈ V
3412, 33eqeltri 2684 . . . . . . 7 𝑊 ∈ V
3534a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → 𝑊 ∈ V)
3632, 35, 26divsfval 16030 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎 ++ 𝑏)) = [(𝑎 ++ 𝑏)] )
37 eqid 2610 . . . . . . . 8 (+g𝑀) = (+g𝑀)
384, 12, 37frmdadd 17215 . . . . . . 7 ((𝑎𝑊𝑏𝑊) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
3938adantl 481 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎(+g𝑀)𝑏) = (𝑎 ++ 𝑏))
4039fveq2d 6107 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = (𝐹‘(𝑎 ++ 𝑏)))
4132, 35, 26divsfval 16030 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑎) = [𝑎] )
4232, 35, 26divsfval 16030 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹𝑏) = [𝑏] )
4341, 42oveq12d 6567 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = ([𝑎] (+g𝐺)[𝑏] ))
4418eleq2d 2673 . . . . . . . . 9 (𝐼𝑉 → (𝑎𝑊𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜))))
4518eleq2d 2673 . . . . . . . . 9 (𝐼𝑉 → (𝑏𝑊𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))))
4644, 45anbi12d 743 . . . . . . . 8 (𝐼𝑉 → ((𝑎𝑊𝑏𝑊) ↔ (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜)))))
4746biimpa 500 . . . . . . 7 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))))
48 eqid 2610 . . . . . . . 8 (+g𝐺) = (+g𝐺)
4922, 7, 21, 48frgpadd 17999 . . . . . . 7 ((𝑎 ∈ ( I ‘Word (𝐼 × 2𝑜)) ∧ 𝑏 ∈ ( I ‘Word (𝐼 × 2𝑜))) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
5047, 49syl 17 . . . . . 6 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ([𝑎] (+g𝐺)[𝑏] ) = [(𝑎 ++ 𝑏)] )
5143, 50eqtrd 2644 . . . . 5 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) = [(𝑎 ++ 𝑏)] )
5236, 40, 513eqtr4d 2654 . . . 4 ((𝐼𝑉 ∧ (𝑎𝑊𝑏𝑊)) → (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5352ralrimivva 2954 . . 3 (𝐼𝑉 → ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)))
5434a1i 11 . . . . 5 (𝐼𝑉𝑊 ∈ V)
5531, 54, 26divsfval 16030 . . . 4 (𝐼𝑉 → (𝐹‘∅) = [∅] )
567, 21frgp0 17996 . . . . 5 (𝐼𝑉 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
5756simprd 478 . . . 4 (𝐼𝑉 → [∅] = (0g𝐺))
5855, 57eqtrd 2644 . . 3 (𝐼𝑉 → (𝐹‘∅) = (0g𝐺))
5927, 53, 583jca 1235 . 2 (𝐼𝑉 → (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺)))
604frmd0 17220 . . 3 ∅ = (0g𝑀)
61 eqid 2610 . . 3 (0g𝐺) = (0g𝐺)
6212, 23, 37, 48, 60, 61ismhm 17160 . 2 (𝐹 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐹:𝑊⟶(Base‘𝐺) ∧ ∀𝑎𝑊𝑏𝑊 (𝐹‘(𝑎(+g𝑀)𝑏)) = ((𝐹𝑎)(+g𝐺)(𝐹𝑏)) ∧ (𝐹‘∅) = (0g𝐺))))
6311, 59, 62sylanbrc 695 1 (𝐼𝑉𝐹 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  c0 3874  cmpt 4643   I cid 4948   × cxp 5036  Oncon0 5640  wf 5800  cfv 5804  (class class class)co 6549  2𝑜c2o 7441   Er wer 7626  [cec 7627  Word cword 13146   ++ cconcat 13148  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117   MndHom cmhm 17156  freeMndcfrmd 17207  Grpcgrp 17245   ~FG cefg 17942  freeGrpcfrgp 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-frmd 17209  df-grp 17248  df-efg 17945  df-frgp 17946
This theorem is referenced by:  frgpup3lem  18013
  Copyright terms: Public domain W3C validator