Step | Hyp | Ref
| Expression |
1 | | simpl 472 |
. . 3
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑊) |
2 | | simpr 476 |
. . 3
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) |
3 | | frgpadd.w |
. . . . . . . 8
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2𝑜)) |
4 | 3 | efgrcl 17951 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 ×
2𝑜))) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 ×
2𝑜))) |
6 | 5 | simpld 474 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐼 ∈ V) |
7 | | frgpadd.g |
. . . . . 6
⊢ 𝐺 = (freeGrp‘𝐼) |
8 | | eqid 2610 |
. . . . . 6
⊢
(freeMnd‘(𝐼
× 2𝑜)) = (freeMnd‘(𝐼 ×
2𝑜)) |
9 | | frgpadd.r |
. . . . . 6
⊢ ∼ = (
~FG ‘𝐼) |
10 | 7, 8, 9 | frgpval 17994 |
. . . . 5
⊢ (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜))
/s ∼ )) |
11 | 6, 10 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜))
/s ∼ )) |
12 | 5 | simprd 478 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝑊 = Word (𝐼 ×
2𝑜)) |
13 | | 2on 7455 |
. . . . . . 7
⊢
2𝑜 ∈ On |
14 | | xpexg 6858 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧
2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈
V) |
15 | 6, 13, 14 | sylancl 693 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐼 × 2𝑜) ∈
V) |
16 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘(freeMnd‘(𝐼 × 2𝑜))) =
(Base‘(freeMnd‘(𝐼 ×
2𝑜))) |
17 | 8, 16 | frmdbas 17212 |
. . . . . 6
⊢ ((𝐼 × 2𝑜)
∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word
(𝐼 ×
2𝑜)) |
18 | 15, 17 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (Base‘(freeMnd‘(𝐼 ×
2𝑜))) = Word (𝐼 ×
2𝑜)) |
19 | 12, 18 | eqtr4d 2647 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝑊 = (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
20 | 3, 9 | efger 17954 |
. . . . 5
⊢ ∼ Er
𝑊 |
21 | 20 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ∼ Er 𝑊) |
22 | 8 | frmdmnd 17219 |
. . . . 5
⊢ ((𝐼 × 2𝑜)
∈ V → (freeMnd‘(𝐼 × 2𝑜)) ∈
Mnd) |
23 | 15, 22 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (freeMnd‘(𝐼 × 2𝑜)) ∈
Mnd) |
24 | | eqid 2610 |
. . . . . 6
⊢
(+g‘(freeMnd‘(𝐼 × 2𝑜))) =
(+g‘(freeMnd‘(𝐼 ×
2𝑜))) |
25 | 7, 8, 9, 24 | frgpcpbl 17995 |
. . . . 5
⊢ ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑐)
∼
(𝑏(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑑)) |
26 | 25 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ((𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑐)
∼
(𝑏(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑑))) |
27 | 23 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → (freeMnd‘(𝐼 × 2𝑜)) ∈
Mnd) |
28 | | simprl 790 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → 𝑏 ∈ 𝑊) |
29 | 19 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → 𝑊 = (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
30 | 28, 29 | eleqtrd 2690 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → 𝑏 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
31 | | simprr 792 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → 𝑑 ∈ 𝑊) |
32 | 31, 29 | eleqtrd 2690 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → 𝑑 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
33 | 16, 24 | mndcl 17124 |
. . . . . 6
⊢
(((freeMnd‘(𝐼
× 2𝑜)) ∈ Mnd ∧ 𝑏 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜))) ∧ 𝑑 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) → (𝑏(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑑)
∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
34 | 27, 30, 32, 33 | syl3anc 1318 |
. . . . 5
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑑)
∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
35 | 34, 29 | eleqtrrd 2691 |
. . . 4
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ (𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝑑)
∈ 𝑊) |
36 | | frgpadd.n |
. . . 4
⊢ + =
(+g‘𝐺) |
37 | 11, 19, 21, 23, 26, 35, 24, 36 | qusaddval 16036 |
. . 3
⊢ (((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝐵)]
∼
) |
38 | 1, 2, 37 | mpd3an23 1418 |
. 2
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝐵)]
∼
) |
39 | 1, 19 | eleqtrd 2690 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
40 | 2, 19 | eleqtrd 2690 |
. . . 4
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ (Base‘(freeMnd‘(𝐼 ×
2𝑜)))) |
41 | 8, 16, 24 | frmdadd 17215 |
. . . 4
⊢ ((𝐴 ∈
(Base‘(freeMnd‘(𝐼 × 2𝑜))) ∧
𝐵 ∈
(Base‘(freeMnd‘(𝐼 × 2𝑜)))) →
(𝐴(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝐵)
= (𝐴 ++ 𝐵)) |
42 | 39, 40, 41 | syl2anc 691 |
. . 3
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → (𝐴(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝐵)
= (𝐴 ++ 𝐵)) |
43 | 42 | eceq1d 7670 |
. 2
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → [(𝐴(+g‘(freeMnd‘(𝐼 ×
2𝑜)))𝐵)]
∼
= [(𝐴 ++ 𝐵)] ∼ ) |
44 | 38, 43 | eqtrd 2644 |
1
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ([𝐴] ∼ + [𝐵] ∼ ) = [(𝐴 ++ 𝐵)] ∼ ) |