MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdmnd Structured version   Visualization version   GIF version

Theorem frmdmnd 17219
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmdmnd (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem frmdmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2611 . 2 (𝐼𝑉 → (Base‘𝑀) = (Base‘𝑀))
2 eqidd 2611 . 2 (𝐼𝑉 → (+g𝑀) = (+g𝑀))
3 frmdmnd.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
4 eqid 2610 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
5 eqid 2610 . . . . . 6 (+g𝑀) = (+g𝑀)
63, 4, 5frmdadd 17215 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
73, 4frmdelbas 17213 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
83, 4frmdelbas 17213 . . . . . 6 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
9 ccatcl 13212 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
107, 8, 9syl2an 493 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
116, 10eqeltrd 2688 . . . 4 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
12113adant1 1072 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ Word 𝐼)
133, 4frmdbas 17212 . . . 4 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
14133ad2ant1 1075 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (Base‘𝑀) = Word 𝐼)
1512, 14eleqtrrd 2691 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
16 simpr1 1060 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘𝑀))
1716, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑥 ∈ Word 𝐼)
18 simpr2 1061 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
1918, 8syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
20 simpr3 1062 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ (Base‘𝑀))
213, 4frmdelbas 17213 . . . . . 6 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2220, 21syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
23 ccatass 13224 . . . . 5 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2417, 19, 22, 23syl3anc 1318 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦) ++ 𝑧) = (𝑥 ++ (𝑦 ++ 𝑧)))
2516, 18, 10syl2anc 691 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
2613adantr 480 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (Base‘𝑀) = Word 𝐼)
2725, 26eleqtrrd 2691 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥 ++ 𝑦) ∈ (Base‘𝑀))
283, 4, 5frmdadd 17215 . . . . 5 (((𝑥 ++ 𝑦) ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
2927, 20, 28syl2anc 691 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦) ++ 𝑧))
30 ccatcl 13212 . . . . . . 7 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3119, 22, 30syl2anc 691 . . . . . 6 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
3231, 26eleqtrrd 2691 . . . . 5 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ (Base‘𝑀))
333, 4, 5frmdadd 17215 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ (𝑦 ++ 𝑧) ∈ (Base‘𝑀)) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3416, 32, 33syl2anc 691 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦 ++ 𝑧)) = (𝑥 ++ (𝑦 ++ 𝑧)))
3524, 29, 343eqtr4d 2654 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥 ++ 𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
3616, 18, 6syl2anc 691 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)𝑦) = (𝑥 ++ 𝑦))
3736oveq1d 6564 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = ((𝑥 ++ 𝑦)(+g𝑀)𝑧))
383, 4, 5frmdadd 17215 . . . . 5 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
3918, 20, 38syl2anc 691 . . . 4 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4039oveq2d 6565 . . 3 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)) = (𝑥(+g𝑀)(𝑦 ++ 𝑧)))
4135, 37, 403eqtr4d 2654 . 2 ((𝐼𝑉 ∧ (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
42 wrd0 13185 . . 3 ∅ ∈ Word 𝐼
4342, 13syl5eleqr 2695 . 2 (𝐼𝑉 → ∅ ∈ (Base‘𝑀))
443, 4, 5frmdadd 17215 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
4543, 44sylan 487 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
467adantl 481 . . . 4 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
47 ccatlid 13222 . . . 4 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
4846, 47syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
4945, 48eqtrd 2644 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
503, 4, 5frmdadd 17215 . . . . 5 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5150ancoms 468 . . . 4 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
5243, 51sylan 487 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
53 ccatrid 13223 . . . 4 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
5446, 53syl 17 . . 3 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
5552, 54eqtrd 2644 . 2 ((𝐼𝑉𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
561, 2, 15, 41, 43, 49, 55ismndd 17136 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  c0 3874  cfv 5804  (class class class)co 6549  Word cword 13146   ++ cconcat 13148  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117  freeMndcfrmd 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-frmd 17209
This theorem is referenced by:  frmdsssubm  17221  frmdgsum  17222  frmdup1  17224  frgp0  17996  frgpadd  17999  frgpmhm  18001  mrsubff  30663  mrsubccat  30669  elmrsubrn  30671
  Copyright terms: Public domain W3C validator