Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem18 Structured version   Visualization version   GIF version

Theorem fourierdlem18 39018
 Description: The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem18.n (𝜑𝑁 ∈ ℝ)
fourierdlem18.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
Assertion
Ref Expression
fourierdlem18 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Distinct variable groups:   𝑁,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑆(𝑠)

Proof of Theorem fourierdlem18
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resincncf 38760 . . . . 5 (sin ↾ ℝ) ∈ (ℝ–cn→ℝ)
2 cncff 22504 . . . . 5 ((sin ↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾ ℝ):ℝ⟶ℝ)
31, 2ax-mp 5 . . . 4 (sin ↾ ℝ):ℝ⟶ℝ
4 fourierdlem18.n . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
5 halfre 11123 . . . . . . . . 9 (1 / 2) ∈ ℝ
65a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
74, 6readdcld 9948 . . . . . . 7 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
87adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
9 pire 24014 . . . . . . . . . 10 π ∈ ℝ
109renegcli 10221 . . . . . . . . 9 -π ∈ ℝ
11 iccssre 12126 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
1210, 9, 11mp2an 704 . . . . . . . 8 (-π[,]π) ⊆ ℝ
1312sseli 3564 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
1413adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
158, 14remulcld 9949 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
16 eqid 2610 . . . . 5 (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))
1715, 16fmptd 6292 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ)
18 fcompt 6306 . . . 4 (((sin ↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
193, 17, 18sylancr 694 . . 3 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
20 eqidd 2611 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)))
21 oveq2 6557 . . . . . . . 8 (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
2221adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
23 simpr 476 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ (-π[,]π))
247adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
2512, 23sseldi 3566 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
2624, 25remulcld 9949 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ)
2720, 22, 23, 26fvmptd 6197 . . . . . 6 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥))
2827fveq2d 6107 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)))
2928mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))))
30 fvres 6117 . . . . . 6 (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3126, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3231mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))))
33 oveq2 6557 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠))
3433fveq2d 6107 . . . . . 6 (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3534cbvmptv 4678 . . . . 5 (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3635a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
3729, 32, 363eqtrd 2648 . . 3 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
38 fourierdlem18.s . . . . 5 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3938eqcomi 2619 . . . 4 (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆
4039a1i 11 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆)
4119, 37, 403eqtrrd 2649 . 2 (𝜑𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))))
42 ax-resscn 9872 . . . . . . . 8 ℝ ⊆ ℂ
4312, 42sstri 3577 . . . . . . 7 (-π[,]π) ⊆ ℂ
4443a1i 11 . . . . . 6 (𝜑 → (-π[,]π) ⊆ ℂ)
454recnd 9947 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
46 halfcn 11124 . . . . . . . 8 (1 / 2) ∈ ℂ
4746a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
4845, 47addcld 9938 . . . . . 6 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
49 ssid 3587 . . . . . . 7 ℂ ⊆ ℂ
5049a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
5144, 48, 50constcncfg 38756 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈ ((-π[,]π)–cn→ℂ))
5244, 50idcncfg 38757 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈ ((-π[,]π)–cn→ℂ))
5351, 52mulcncf 23023 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℂ))
54 ssid 3587 . . . . 5 (-π[,]π) ⊆ (-π[,]π)
5554a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ (-π[,]π))
5642a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
5716, 53, 55, 56, 15cncfmptssg 38755 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℝ))
581a1i 11 . . 3 (𝜑 → (sin ↾ ℝ) ∈ (ℝ–cn→ℝ))
5957, 58cncfco 22518 . 2 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) ∈ ((-π[,]π)–cn→ℝ))
6041, 59eqeltrd 2688 1 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540   ↦ cmpt 4643   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146   / cdiv 10563  2c2 10947  [,]cicc 12049  sincsin 14633  πcpi 14636  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem85  39084  fourierdlem88  39087
 Copyright terms: Public domain W3C validator