Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  fh1 Structured version   Visualization version   GIF version

Theorem fh1 27861
 Description: Foulis-Holland Theorem. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. First of two parts. Theorem 5 of [Kalmbach] p. 25. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
fh1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))

Proof of Theorem fh1
StepHypRef Expression
1 chincl 27742 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
2 chincl 27742 . . . . . . . 8 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
3 chjcl 27600 . . . . . . . 8 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
41, 2, 3syl2an 493 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
54anandis 869 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → ((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C )
6 chjcl 27600 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
7 chincl 27742 . . . . . . . 8 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
86, 7sylan2 490 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
9 chsh 27465 . . . . . . 7 ((𝐴 ∩ (𝐵 𝐶)) ∈ C → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
108, 9syl 17 . . . . . 6 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) ∈ S )
115, 10jca 553 . . . . 5 ((𝐴C ∧ (𝐵C𝐶C )) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
12113impb 1252 . . . 4 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
1312adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ))
14 ledi 27783 . . . 4 ((𝐴C𝐵C𝐶C ) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
1514adantr 480 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)))
16 incom 3767 . . . . . . . 8 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
1716a1i 11 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
18 chdmj1 27772 . . . . . . . . 9 (((𝐴𝐵) ∈ C ∧ (𝐴𝐶) ∈ C ) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
191, 2, 18syl2an 493 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))))
20 chdmm1 27768 . . . . . . . . 9 ((𝐴C𝐵C ) → (⊥‘(𝐴𝐵)) = ((⊥‘𝐴) ∨ (⊥‘𝐵)))
21 chdmm1 27768 . . . . . . . . 9 ((𝐴C𝐶C ) → (⊥‘(𝐴𝐶)) = ((⊥‘𝐴) ∨ (⊥‘𝐶)))
2220, 21ineqan12d 3778 . . . . . . . 8 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((⊥‘(𝐴𝐵)) ∩ (⊥‘(𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2319, 22eqtrd 2644 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (⊥‘((𝐴𝐵) ∨ (𝐴𝐶))) = (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
2417, 23ineq12d 3777 . . . . . 6 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
25243impdi 1373 . . . . 5 ((𝐴C𝐵C𝐶C ) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
2625adantr 480 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
27 inass 3785 . . . . . . 7 (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))))
28 cmcm2 27859 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐴 𝐶 (⊥‘𝐵)))
29 choccl 27549 . . . . . . . . . . . . . . 15 (𝐵C → (⊥‘𝐵) ∈ C )
30 cmbr3 27851 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3129, 30sylan2 490 . . . . . . . . . . . . . 14 ((𝐴C𝐵C ) → (𝐴 𝐶 (⊥‘𝐵) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3228, 31bitrd 267 . . . . . . . . . . . . 13 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵))))
3332biimpa 500 . . . . . . . . . . . 12 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
34333adantl3 1212 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
3534adantrr 749 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) = (𝐴 ∩ (⊥‘𝐵)))
36 cmcm2 27859 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐴 𝐶 (⊥‘𝐶)))
37 choccl 27549 . . . . . . . . . . . . . . 15 (𝐶C → (⊥‘𝐶) ∈ C )
38 cmbr3 27851 . . . . . . . . . . . . . . 15 ((𝐴C ∧ (⊥‘𝐶) ∈ C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
3937, 38sylan2 490 . . . . . . . . . . . . . 14 ((𝐴C𝐶C ) → (𝐴 𝐶 (⊥‘𝐶) ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4036, 39bitrd 267 . . . . . . . . . . . . 13 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶))))
4140biimpa 500 . . . . . . . . . . . 12 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
42413adantl2 1211 . . . . . . . . . . 11 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4342adantrl 748 . . . . . . . . . 10 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))) = (𝐴 ∩ (⊥‘𝐶)))
4435, 43ineq12d 3777 . . . . . . . . 9 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶))))
45 inindi 3792 . . . . . . . . 9 (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐵))) ∩ (𝐴 ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))
46 inindi 3792 . . . . . . . . 9 (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = ((𝐴 ∩ (⊥‘𝐵)) ∩ (𝐴 ∩ (⊥‘𝐶)))
4744, 45, 463eqtr4g 2669 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
4847ineq2d 3776 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐵 𝐶) ∩ (𝐴 ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶))))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
4927, 48syl5eq 2656 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
50 in12 3786 . . . . . 6 ((𝐵 𝐶) ∩ (𝐴 ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
5149, 50syl6eq 2660 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))))
52 chdmj1 27772 . . . . . . . . . . 11 ((𝐵C𝐶C ) → (⊥‘(𝐵 𝐶)) = ((⊥‘𝐵) ∩ (⊥‘𝐶)))
5352ineq2d 3776 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))))
54 chocin 27738 . . . . . . . . . . 11 ((𝐵 𝐶) ∈ C → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
556, 54syl 17 . . . . . . . . . 10 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ (⊥‘(𝐵 𝐶))) = 0)
5653, 55eqtr3d 2646 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶))) = 0)
5756ineq2d 3776 . . . . . . . 8 ((𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = (𝐴 ∩ 0))
58 chm0 27734 . . . . . . . 8 (𝐴C → (𝐴 ∩ 0) = 0)
5957, 58sylan9eqr 2666 . . . . . . 7 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
60593impb 1252 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6160adantr 480 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ ((𝐵 𝐶) ∩ ((⊥‘𝐵) ∩ (⊥‘𝐶)))) = 0)
6251, 61eqtrd 2644 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐵 𝐶) ∩ 𝐴) ∩ (((⊥‘𝐴) ∨ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ (⊥‘𝐶)))) = 0)
6326, 62eqtrd 2644 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)
64 pjoml 27679 . . 3 (((((𝐴𝐵) ∨ (𝐴𝐶)) ∈ C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ S ) ∧ (((𝐴𝐵) ∨ (𝐴𝐶)) ⊆ (𝐴 ∩ (𝐵 𝐶)) ∧ ((𝐴 ∩ (𝐵 𝐶)) ∩ (⊥‘((𝐴𝐵) ∨ (𝐴𝐶)))) = 0)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6513, 15, 63, 64syl12anc 1316 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = (𝐴 ∩ (𝐵 𝐶)))
6665eqcomd 2616 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∩ cin 3539   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   Sℋ csh 27169   Cℋ cch 27170  ⊥cort 27171   ∨ℋ chj 27174  0ℋc0h 27176   𝐶ℋ ccm 27177 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-ph 27052  df-cbn 27103  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-shs 27551  df-chj 27553  df-cm 27826 This theorem is referenced by:  cm2j  27863  fh1i  27864  chirredlem3  28635
 Copyright terms: Public domain W3C validator