Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqan12d Structured version   Visualization version   GIF version

Theorem ineqan12d 3778
 Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1 (𝜑𝐴 = 𝐵)
ineqan12d.2 (𝜓𝐶 = 𝐷)
Assertion
Ref Expression
ineqan12d ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ineqan12d.2 . 2 (𝜓𝐶 = 𝐷)
3 ineq12 3771 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3syl2an 493 1 ((𝜑𝜓) → (𝐴𝐶) = (𝐵𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∩ cin 3539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547 This theorem is referenced by:  funprg  5854  funtpg  5856  funcnvpr  5864  funcnvqp  5866  funcnvqpOLD  5867  fvun1  6179  fndmin  6232  offval  6802  ofrfval  6803  offval3  7053  fpar  7168  wfrlem4  7305  fisn  8216  ixxin  12063  vdwmc  15520  fvcosymgeq  17672  cssincl  19851  inmbl  23117  iundisj2  23124  itg1addlem3  23271  fh1  27861  iundisj2f  28785  iundisj2fi  28943  offval0  42093
 Copyright terms: Public domain W3C validator