Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > offval0 | Structured version Visualization version GIF version |
Description: Value of an operation applied to two functions. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
offval0 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 6795 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) |
3 | dmeq 5246 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
4 | dmeq 5246 | . . . . 5 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
5 | 3, 4 | ineqan12d 3778 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
6 | fveq1 6102 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
7 | fveq1 6102 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
8 | 6, 7 | oveqan12d 6568 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
9 | 5, 8 | mpteq12dv 4663 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
10 | 9 | adantl 481 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
11 | elex 3185 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
12 | 11 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
13 | elex 3185 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
14 | 13 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
15 | dmexg 6989 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → dom 𝐹 ∈ V) |
17 | inex1g 4729 | . . 3 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V) | |
18 | mptexg 6389 | . . 3 ⊢ ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
19 | 16, 17, 18 | 3syl 18 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
20 | 2, 10, 12, 14, 19 | ovmpt2d 6686 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 ↦ cmpt 4643 dom cdm 5038 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ∘𝑓 cof 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 |
This theorem is referenced by: fdivval 42131 |
Copyright terms: Public domain | W3C validator |