MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxin Structured version   Visualization version   GIF version

Theorem ixxin 12063
Description: Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxin.2 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
ixxin.3 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
Assertion
Ref Expression
ixxin (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxin
StepHypRef Expression
1 inrab 3858 . . 3 ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))}
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxval 12054 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
42ixxval 12054 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝑂𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)})
53, 4ineqan12d 3778 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}))
6 ixxin.2 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
763expa 1257 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
87adantlr 747 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
9 ixxin.3 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1093expb 1258 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1110ancoms 468 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1211adantll 746 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
138, 12anbi12d 743 . . . . . 6 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷))))
14 an4 861 . . . . . 6 (((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1513, 14syl6bbr 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))))
1615rabbidva 3163 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
1716an4s 865 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
181, 5, 173eqtr4a 2670 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
19 ifcl 4080 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
2019ancoms 468 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
21 ifcl 4080 . . . 4 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*)
222ixxval 12054 . . . 4 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2320, 21, 22syl2an 493 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2423an4s 865 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2518, 24eqtr4d 2647 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  cin 3539  ifcif 4036   class class class wbr 4583  (class class class)co 6549  cmpt2 6551  *cxr 9952  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-xr 9957
This theorem is referenced by:  iooin  12080  itgspliticc  23409  cvmliftlem10  30530
  Copyright terms: Public domain W3C validator