Proof of Theorem ixxin
Step | Hyp | Ref
| Expression |
1 | | inrab 3858 |
. . 3
⊢ ({𝑧 ∈ ℝ*
∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷))} |
2 | | ixx.1 |
. . . . 5
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
3 | 2 | ixxval 12054 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
4 | 2 | ixxval 12054 |
. . . 4
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) → (𝐶𝑂𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷)}) |
5 | 3, 4 | ineqan12d 3778 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷)})) |
6 | | ixxin.2 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑧
∈ ℝ*) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
7 | 6 | 3expa 1257 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
8 | 7 | adantlr 747 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
∧ 𝑧 ∈
ℝ*) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
9 | | ixxin.3 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐷
∈ ℝ*) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) |
10 | 9 | 3expb 1258 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℝ*
∧ (𝐵 ∈
ℝ* ∧ 𝐷
∈ ℝ*)) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) |
11 | 10 | ancoms 468 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) |
12 | 11 | adantll 746 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
∧ 𝑧 ∈
ℝ*) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) |
13 | 8, 12 | anbi12d 743 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
∧ 𝑧 ∈
ℝ*) → ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷)))) |
14 | | an4 861 |
. . . . . 6
⊢ (((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷)) ↔ ((𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) |
15 | 13, 14 | syl6bbr 277 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
∧ 𝑧 ∈
ℝ*) → ((if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷)))) |
16 | 15 | rabbidva 3163 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ {𝑧 ∈
ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷))}) |
17 | 16 | an4s 865 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ {𝑧 ∈
ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧 ∧ 𝑧𝑆𝐷))}) |
18 | 1, 5, 17 | 3eqtr4a 2670 |
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))}) |
19 | | ifcl 4080 |
. . . . 5
⊢ ((𝐶 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈
ℝ*) |
20 | 19 | ancoms 468 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈
ℝ*) |
21 | | ifcl 4080 |
. . . 4
⊢ ((𝐵 ∈ ℝ*
∧ 𝐷 ∈
ℝ*) → if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ∈
ℝ*) |
22 | 2 | ixxval 12054 |
. . . 4
⊢
((if(𝐴 ≤ 𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ∈ ℝ*) →
(if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))}) |
23 | 20, 21, 22 | syl2an 493 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))}) |
24 | 23 | an4s 865 |
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ∧ 𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷))}) |
25 | 18, 24 | eqtr4d 2647 |
1
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*))
→ ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) |