Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssincl Structured version   Visualization version   GIF version

Theorem cssincl 19851
 Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
css0.c 𝐶 = (CSubSp‘𝑊)
Assertion
Ref Expression
cssincl ((𝑊 ∈ PreHil ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)

Proof of Theorem cssincl
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2610 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
31, 2ocvss 19833 . . . . 5 ((ocv‘𝑊)‘𝐴) ⊆ (Base‘𝑊)
41, 2ocvss 19833 . . . . 5 ((ocv‘𝑊)‘𝐵) ⊆ (Base‘𝑊)
53, 4unssi 3750 . . . 4 (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊)
6 css0.c . . . . 5 𝐶 = (CSubSp‘𝑊)
71, 6, 2ocvcss 19850 . . . 4 ((𝑊 ∈ PreHil ∧ (((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵)) ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶)
85, 7mpan2 703 . . 3 (𝑊 ∈ PreHil → ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶)
92, 6cssi 19847 . . . . . 6 (𝐴𝐶𝐴 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)))
102, 6cssi 19847 . . . . . 6 (𝐵𝐶𝐵 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
119, 10ineqan12d 3778 . . . . 5 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵))))
122unocv 19843 . . . . 5 ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) = (((ocv‘𝑊)‘((ocv‘𝑊)‘𝐴)) ∩ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝐵)))
1311, 12syl6eqr 2662 . . . 4 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) = ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))))
1413eleq1d 2672 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐵) ∈ 𝐶 ↔ ((ocv‘𝑊)‘(((ocv‘𝑊)‘𝐴) ∪ ((ocv‘𝑊)‘𝐵))) ∈ 𝐶))
158, 14syl5ibrcom 236 . 2 (𝑊 ∈ PreHil → ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶))
16153impib 1254 1 ((𝑊 ∈ PreHil ∧ 𝐴𝐶𝐵𝐶) → (𝐴𝐵) ∈ 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ‘cfv 5804  Basecbs 15695  PreHilcphl 19788  ocvcocv 19823  CSubSpccss 19824 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-rnghom 18538  df-staf 18668  df-srng 18669  df-lmod 18688  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-phl 19790  df-ocv 19826  df-css 19827 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator