MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvpr Structured version   Visualization version   GIF version

Theorem funcnvpr 5864
Description: The converse pair of ordered pairs is a function if the second members are different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
funcnvpr ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})

Proof of Theorem funcnvpr
StepHypRef Expression
1 funcnvsn 5850 . . . 4 Fun {⟨𝐴, 𝐵⟩}
2 funcnvsn 5850 . . . 4 Fun {⟨𝐶, 𝐷⟩}
31, 2pm3.2i 470 . . 3 (Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩})
4 df-rn 5049 . . . . . . 7 ran {⟨𝐴, 𝐵⟩} = dom {⟨𝐴, 𝐵⟩}
5 rnsnopg 5532 . . . . . . 7 (𝐴𝑈 → ran {⟨𝐴, 𝐵⟩} = {𝐵})
64, 5syl5eqr 2658 . . . . . 6 (𝐴𝑈 → dom {⟨𝐴, 𝐵⟩} = {𝐵})
7 df-rn 5049 . . . . . . 7 ran {⟨𝐶, 𝐷⟩} = dom {⟨𝐶, 𝐷⟩}
8 rnsnopg 5532 . . . . . . 7 (𝐶𝑉 → ran {⟨𝐶, 𝐷⟩} = {𝐷})
97, 8syl5eqr 2658 . . . . . 6 (𝐶𝑉 → dom {⟨𝐶, 𝐷⟩} = {𝐷})
106, 9ineqan12d 3778 . . . . 5 ((𝐴𝑈𝐶𝑉) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
11103adant3 1074 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ({𝐵} ∩ {𝐷}))
12 disjsn2 4193 . . . . 5 (𝐵𝐷 → ({𝐵} ∩ {𝐷}) = ∅)
13123ad2ant3 1077 . . . 4 ((𝐴𝑈𝐶𝑉𝐵𝐷) → ({𝐵} ∩ {𝐷}) = ∅)
1411, 13eqtrd 2644 . . 3 ((𝐴𝑈𝐶𝑉𝐵𝐷) → (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅)
15 funun 5846 . . 3 (((Fun {⟨𝐴, 𝐵⟩} ∧ Fun {⟨𝐶, 𝐷⟩}) ∧ (dom {⟨𝐴, 𝐵⟩} ∩ dom {⟨𝐶, 𝐷⟩}) = ∅) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
163, 14, 15sylancr 694 . 2 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
17 df-pr 4128 . . . . 5 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
1817cnveqi 5219 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
19 cnvun 5457 . . . 4 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2018, 19eqtri 2632 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
2120funeqi 5824 . 2 (Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ↔ Fun ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}))
2216, 21sylibr 223 1 ((𝐴𝑈𝐶𝑉𝐵𝐷) → Fun {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cun 3538  cin 3539  c0 3874  {csn 4125  {cpr 4127  cop 4131  ccnv 5037  dom cdm 5038  ran crn 5039  Fun wfun 5798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806
This theorem is referenced by:  funcnvtp  5865  funcnvqp  5866  funcnvqpOLD  5867  funcnvs2  13508
  Copyright terms: Public domain W3C validator