MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1373
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 869 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1252 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-3an 1033
This theorem is referenced by:  oacan  7515  omcan  7536  ecovdi  7743  distrpi  9599  axltadd  9990  ccatlcan  13324  absmulgcd  15104  axlowdimlem14  25635  fh1  27861  fh2  27862  cm2j  27863  hoadddi  28046  hosubdi  28051  leopmul2i  28378  dvconstbi  37555  eel2131  37960  uun2131  38039  uun2131p1  38040  reccot  42298  rectan  42299
  Copyright terms: Public domain W3C validator