MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2lem Structured version   Visualization version   GIF version

Theorem dvres2lem 23480
Description: Lemma for dvres2 23482. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvres.k 𝐾 = (TopOpen‘ℂfld)
dvres.t 𝑇 = (𝐾t 𝑆)
dvres.g 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
dvres.s (𝜑𝑆 ⊆ ℂ)
dvres.f (𝜑𝐹:𝐴⟶ℂ)
dvres.a (𝜑𝐴𝑆)
dvres.b (𝜑𝐵𝑆)
dvres.y (𝜑𝑦 ∈ ℂ)
dvres2lem.d (𝜑𝑥(𝑆 D 𝐹)𝑦)
dvres2lem.x (𝜑𝑥𝐵)
Assertion
Ref Expression
dvres2lem (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑧,𝐾   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦)

Proof of Theorem dvres2lem
StepHypRef Expression
1 dvres.t . . . . . . 7 𝑇 = (𝐾t 𝑆)
2 dvres.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtop 22397 . . . . . . . 8 𝐾 ∈ Top
4 dvres.s . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
5 cnex 9896 . . . . . . . . 9 ℂ ∈ V
6 ssexg 4732 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
74, 5, 6sylancl 693 . . . . . . . 8 (𝜑𝑆 ∈ V)
8 resttop 20774 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝑆 ∈ V) → (𝐾t 𝑆) ∈ Top)
93, 7, 8sylancr 694 . . . . . . 7 (𝜑 → (𝐾t 𝑆) ∈ Top)
101, 9syl5eqel 2692 . . . . . 6 (𝜑𝑇 ∈ Top)
11 inss1 3795 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
12 dvres.a . . . . . . . . 9 (𝜑𝐴𝑆)
1311, 12syl5ss 3579 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝑆)
142cnfldtopon 22396 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℂ)
15 resttopon 20775 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
1614, 4, 15sylancr 694 . . . . . . . . . 10 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
171, 16syl5eqel 2692 . . . . . . . . 9 (𝜑𝑇 ∈ (TopOn‘𝑆))
18 toponuni 20542 . . . . . . . . 9 (𝑇 ∈ (TopOn‘𝑆) → 𝑆 = 𝑇)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 = 𝑇)
2013, 19sseqtrd 3604 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝑇)
21 difssd 3700 . . . . . . 7 (𝜑 → ( 𝑇𝐵) ⊆ 𝑇)
2220, 21unssd 3751 . . . . . 6 (𝜑 → ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇)
23 inundif 3998 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
2412, 19sseqtrd 3604 . . . . . . . 8 (𝜑𝐴 𝑇)
25 ssdif 3707 . . . . . . . 8 (𝐴 𝑇 → (𝐴𝐵) ⊆ ( 𝑇𝐵))
26 unss2 3746 . . . . . . . 8 ((𝐴𝐵) ⊆ ( 𝑇𝐵) → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2724, 25, 263syl 18 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
2823, 27syl5eqssr 3613 . . . . . 6 (𝜑𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵)))
29 eqid 2610 . . . . . . 7 𝑇 = 𝑇
3029ntrss 20669 . . . . . 6 ((𝑇 ∈ Top ∧ ((𝐴𝐵) ∪ ( 𝑇𝐵)) ⊆ 𝑇𝐴 ⊆ ((𝐴𝐵) ∪ ( 𝑇𝐵))) → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
3110, 22, 28, 30syl3anc 1318 . . . . 5 (𝜑 → ((int‘𝑇)‘𝐴) ⊆ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
32 dvres2lem.d . . . . . . 7 (𝜑𝑥(𝑆 D 𝐹)𝑦)
33 dvres.g . . . . . . . 8 𝐺 = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
34 dvres.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
351, 2, 33, 4, 34, 12eldv 23468 . . . . . . 7 (𝜑 → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥))))
3632, 35mpbid 221 . . . . . 6 (𝜑 → (𝑥 ∈ ((int‘𝑇)‘𝐴) ∧ 𝑦 ∈ (𝐺 lim 𝑥)))
3736simpld 474 . . . . 5 (𝜑𝑥 ∈ ((int‘𝑇)‘𝐴))
3831, 37sseldd 3569 . . . 4 (𝜑𝑥 ∈ ((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))))
39 dvres2lem.x . . . 4 (𝜑𝑥𝐵)
4038, 39elind 3760 . . 3 (𝜑𝑥 ∈ (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
41 dvres.b . . . . . 6 (𝜑𝐵𝑆)
4241, 19sseqtrd 3604 . . . . 5 (𝜑𝐵 𝑇)
43 inss2 3796 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
4443a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
45 eqid 2610 . . . . . 6 (𝑇t 𝐵) = (𝑇t 𝐵)
4629, 45restntr 20796 . . . . 5 ((𝑇 ∈ Top ∧ 𝐵 𝑇 ∧ (𝐴𝐵) ⊆ 𝐵) → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
4710, 42, 44, 46syl3anc 1318 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵))
481oveq1i 6559 . . . . . . 7 (𝑇t 𝐵) = ((𝐾t 𝑆) ↾t 𝐵)
493a1i 11 . . . . . . . 8 (𝜑𝐾 ∈ Top)
50 restabs 20779 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐵𝑆𝑆 ∈ V) → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5149, 41, 7, 50syl3anc 1318 . . . . . . 7 (𝜑 → ((𝐾t 𝑆) ↾t 𝐵) = (𝐾t 𝐵))
5248, 51syl5eq 2656 . . . . . 6 (𝜑 → (𝑇t 𝐵) = (𝐾t 𝐵))
5352fveq2d 6107 . . . . 5 (𝜑 → (int‘(𝑇t 𝐵)) = (int‘(𝐾t 𝐵)))
5453fveq1d 6105 . . . 4 (𝜑 → ((int‘(𝑇t 𝐵))‘(𝐴𝐵)) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5547, 54eqtr3d 2646 . . 3 (𝜑 → (((int‘𝑇)‘((𝐴𝐵) ∪ ( 𝑇𝐵))) ∩ 𝐵) = ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
5640, 55eleqtrd 2690 . 2 (𝜑𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)))
57 limcresi 23455 . . . 4 (𝐺 lim 𝑥) ⊆ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥)
5836simprd 478 . . . 4 (𝜑𝑦 ∈ (𝐺 lim 𝑥))
5957, 58sseldi 3566 . . 3 (𝜑𝑦 ∈ ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
60 difss 3699 . . . . . . . . 9 ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴𝐵)
6160, 43sstri 3577 . . . . . . . 8 ((𝐴𝐵) ∖ {𝑥}) ⊆ 𝐵
6261sseli 3564 . . . . . . 7 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) → 𝑧𝐵)
63 fvres 6117 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
64 fvres 6117 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6539, 64syl 17 . . . . . . . . 9 (𝜑 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
6663, 65oveqan12rd 6569 . . . . . . . 8 ((𝜑𝑧𝐵) → (((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) = ((𝐹𝑧) − (𝐹𝑥)))
6766oveq1d 6564 . . . . . . 7 ((𝜑𝑧𝐵) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6862, 67sylan2 490 . . . . . 6 ((𝜑𝑧 ∈ ((𝐴𝐵) ∖ {𝑥})) → ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6968mpteq2dva 4672 . . . . 5 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7033reseq1i 5313 . . . . . 6 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥}))
71 ssdif 3707 . . . . . . 7 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}))
72 resmpt 5369 . . . . . . 7 (((𝐴𝐵) ∖ {𝑥}) ⊆ (𝐴 ∖ {𝑥}) → ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))))
7311, 71, 72mp2b 10 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7470, 73eqtri 2632 . . . . 5 (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
7569, 74syl6eqr 2662 . . . 4 (𝜑 → (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})))
7675oveq1d 6564 . . 3 (𝜑 → ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥) = ((𝐺 ↾ ((𝐴𝐵) ∖ {𝑥})) lim 𝑥))
7759, 76eleqtrrd 2691 . 2 (𝜑𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))
78 eqid 2610 . . 3 (𝐾t 𝐵) = (𝐾t 𝐵)
79 eqid 2610 . . 3 (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) = (𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥)))
8041, 4sstrd 3578 . . 3 (𝜑𝐵 ⊆ ℂ)
81 fresin 5986 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8234, 81syl 17 . . 3 (𝜑 → (𝐹𝐵):(𝐴𝐵)⟶ℂ)
8378, 2, 79, 80, 82, 44eldv 23468 . 2 (𝜑 → (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝐵))‘(𝐴𝐵)) ∧ 𝑦 ∈ ((𝑧 ∈ ((𝐴𝐵) ∖ {𝑥}) ↦ ((((𝐹𝐵)‘𝑧) − ((𝐹𝐵)‘𝑥)) / (𝑧𝑥))) lim 𝑥))))
8456, 77, 83mpbir2and 959 1 (𝜑𝑥(𝐵 D (𝐹𝐵))𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  {csn 4125   cuni 4372   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cmin 10145   / cdiv 10563  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   lim climc 23432   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436  df-dv 23437
This theorem is referenced by:  dvres2  23482
  Copyright terms: Public domain W3C validator