MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   GIF version

Theorem restntr 20796
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20795 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restntr ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))

Proof of Theorem restntr
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
21fveq2i 6106 . . . . . 6 (int‘𝐾) = (int‘(𝐽t 𝑌))
32fveq1i 6104 . . . . 5 ((int‘𝐾)‘𝑆) = ((int‘(𝐽t 𝑌))‘𝑆)
4 restcls.1 . . . . . . . . . 10 𝑋 = 𝐽
54topopn 20536 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 4732 . . . . . . . . . 10 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
76ancoms 468 . . . . . . . . 9 ((𝑋𝐽𝑌𝑋) → 𝑌 ∈ V)
85, 7sylan 487 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
9 resttop 20774 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
108, 9syldan 486 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
11103adant3 1074 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
124restuni 20776 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
1312sseq2d 3596 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑆𝑌𝑆 (𝐽t 𝑌)))
1413biimp3a 1424 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
15 eqid 2610 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
1615ntropn 20663 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
1711, 14, 16syl2anc 691 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
183, 17syl5eqel 2692 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌))
19 simp1 1054 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
20 uniexg 6853 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
214, 20syl5eqel 2692 . . . . . . . 8 (𝐽 ∈ Top → 𝑋 ∈ V)
22 ssexg 4732 . . . . . . . 8 ((𝑌𝑋𝑋 ∈ V) → 𝑌 ∈ V)
2321, 22sylan2 490 . . . . . . 7 ((𝑌𝑋𝐽 ∈ Top) → 𝑌 ∈ V)
2423ancoms 468 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
25243adant3 1074 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
26 elrest 15911 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2719, 25, 26syl2anc 691 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2818, 27mpbid 221 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌))
294eltopss 20537 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3029sseld 3567 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑥𝑜𝑥𝑋))
3130adantrr 749 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
32313ad2antl1 1216 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
33 eldif 3550 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑌))
3433simplbi2 653 . . . . . . . . 9 (𝑥𝑋 → (¬ 𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3534orrd 392 . . . . . . . 8 (𝑥𝑋 → (𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3632, 35syl6 34 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → (𝑥𝑌𝑥 ∈ (𝑋𝑌))))
37 elin 3758 . . . . . . . . . . 11 (𝑥 ∈ (𝑜𝑌) ↔ (𝑥𝑜𝑥𝑌))
38 eleq2 2677 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ ((int‘𝐾)‘𝑆) ↔ 𝑥 ∈ (𝑜𝑌)))
39 elun1 3742 . . . . . . . . . . . . 13 (𝑥 ∈ ((int‘𝐾)‘𝑆) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4038, 39syl6bir 243 . . . . . . . . . . . 12 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4140ad2antll 761 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4237, 41syl5bir 232 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((𝑥𝑜𝑥𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4342expdimp 452 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥𝑌𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
44 elun2 3743 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4544a1i 11 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4643, 45jaod 394 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4746ex 449 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))))
4836, 47mpdd 42 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4948ssrdv 3574 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
5011adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝐽t 𝑌) ∈ Top)
511, 50syl5eqel 2692 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝐾 ∈ Top)
5214adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑆 (𝐽t 𝑌))
531unieqi 4381 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
5453eqcomi 2619 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
5554ntrss2 20671 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
5651, 52, 55syl2anc 691 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
57 unss1 3744 . . . . . 6 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5856, 57syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5949, 58sstrd 3578 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
60 simpl1 1057 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝐽 ∈ Top)
61 sstr 3576 . . . . . . . . . . . . . . 15 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
6261ancoms 468 . . . . . . . . . . . . . 14 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
63623adant1 1072 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
6463adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑆𝑋)
65 difss 3699 . . . . . . . . . . . 12 (𝑋𝑌) ⊆ 𝑋
6664, 65jctir 559 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋))
67 unss 3749 . . . . . . . . . . 11 ((𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋) ↔ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
6866, 67sylib 207 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
69 simprl 790 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜𝐽)
70 simprr 792 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
714ssntr 20672 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7260, 68, 69, 70, 71syl22anc 1319 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
73 ssrin 3800 . . . . . . . . 9 (𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
7472, 73syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
75 sseq1 3589 . . . . . . . 8 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ↔ (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7674, 75syl5ibrcom 236 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7776expr 641 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7877com23 84 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7978impr 647 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
8059, 79mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
8128, 80rexlimddv 3017 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
821, 11syl5eqel 2692 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
8383adant3 1074 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
8463, 65jctir 559 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋))
8584, 67sylib 207 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
864ntropn 20663 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
8719, 85, 86syl2anc 691 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
88 elrestr 15912 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8919, 83, 87, 88syl3anc 1318 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
9089, 1syl6eleqr 2699 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾)
914ntrss2 20671 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
9219, 85, 91syl2anc 691 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
93 ssrin 3800 . . . . 5 (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
9492, 93syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
95 elin 3758 . . . . . . 7 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌))
96 elun 3715 . . . . . . . . 9 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (𝑥𝑆𝑥 ∈ (𝑋𝑌)))
97 orcom 401 . . . . . . . . . 10 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆))
98 df-or 384 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9997, 98bitri 263 . . . . . . . . 9 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
10096, 99bitri 263 . . . . . . . 8 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
101100anbi1i 727 . . . . . . 7 ((𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
10295, 101bitri 263 . . . . . 6 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
103 elndif 3696 . . . . . . . . 9 (𝑥𝑌 → ¬ 𝑥 ∈ (𝑋𝑌))
104 pm2.27 41 . . . . . . . . 9 𝑥 ∈ (𝑋𝑌) → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
105103, 104syl 17 . . . . . . . 8 (𝑥𝑌 → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
106105impcom 445 . . . . . . 7 (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆)
107106a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆))
108102, 107syl5bi 231 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) → 𝑥𝑆))
109108ssrdv 3574 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ⊆ 𝑆)
11094, 109sstrd 3578 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)
11154ssntr 20672 . . 3 (((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) ∧ ((((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾 ∧ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
11282, 14, 90, 110, 111syl22anc 1319 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
11381, 112eqssd 3585 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540   cuni 4372  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  intcnt 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-ntr 20634
This theorem is referenced by:  llycmpkgen2  21163  dvreslem  23479  dvres2lem  23480  dvaddbr  23507  dvmulbr  23508  dvcnvrelem2  23585  limciccioolb  38688  limcicciooub  38704  ioccncflimc  38771  icocncflimc  38775  cncfiooicclem1  38779  fourierdlem62  39061
  Copyright terms: Public domain W3C validator